IDEAS home Printed from https://ideas.repec.org/a/oup/apecpp/v36y2014i2p211-237..html
   My bibliography  Save this article

The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?

Author

Listed:
  • Nelson B. Villoria
  • Derek Byerlee
  • James Stevenson

Abstract

Increasing agricultural yields seem an obvious way to satisfy increasing demands for food and fuel while minimizing expansion of agriculture into forest areas; however, an influential literature worries that promoting agricultural innovation could enhance agriculture's profitability thereby encouraging deforestation. Clarifying the effects of agricultural technological progress on deforestation is therefore crucial for designing effective policy responses to the challenges faced by global agriculture. In this article we review the empirical evidence on these effects and synthesize estimates of future global cropland expansion. Our main insights are that: (i) the empirical evidence on a positive link between regional technological progress and deforestation is much weaker than what seems generally accepted; (ii) at a global level, most analysts expect broad based technological progress to be land saving; however, composition effects are important as low-yield, land-abundant regions are likely to experience further land expansion. Toward the future, empirical work understanding how localized technological progress in agriculture transmits through international trade and commodity markets will help to bridge the gap between the findings of local, econometric, studies on the one hand and global, model based, studies on the other.

Suggested Citation

  • Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
  • Handle: RePEc:oup:apecpp:v:36:y:2014:i:2:p:211-237.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/aepp/ppu005
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shively, Gerald & Pagiola, Stefano, 2004. "Agricultural intensification, local labor markets, and deforestation in the Philippines," Environment and Development Economics, Cambridge University Press, vol. 9(2), pages 241-266, May.
    2. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    3. Arcand, Jean-Louis & Guillaumont, Patrick & Jeanneney, Sylviane Guillaumont, 2008. "Deforestation and the real exchange rate," Journal of Development Economics, Elsevier, vol. 86(2), pages 242-262, June.
    4. Miet Maertens & Manfred Zeller & Regina Birner, 2006. "Sustainable agricultural intensification in forest frontier areas," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 197-206, March.
    5. Edward B. Barbier, 2001. "The Economics of Tropical Deforestation and Land Use: An Introduction to the Special Issue," Land Economics, University of Wisconsin Press, vol. 77(2), pages 155-171.
    6. Jesse H. Ausubel & Iddo K. Wernick & Paul E. Waggoner, 2013. "Peak Farmland and the Prospect for Land Sparing," Population and Development Review, The Population Council, Inc., vol. 38, pages 221-242, February.
    7. Michetti, Melania, 2012. "Modelling Land Use, Land-Use Change, and Forestry in Climate Change: A Review of Major Approaches," Climate Change and Sustainable Development 130546, Fondazione Eni Enrico Mattei (FEEM).
    8. Gerald C. Nelson & Daniel Hellerstein, 1997. "Do Roads Cause Deforestation? Using Satellite Images in Econometric Analysis of Land Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 80-88.
    9. Hertel, Thomas & Rose, Steven & Tol, Richard, 2008. "Land Use in Computable General Equilibrium Models: An Overview," GTAP Working Papers 2595, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    10. Arcand, Jean-Louis & Guillaumont, Patrick & Jeanneney, Sylviane Guillaumont, 2008. "Deforestation and the real exchange rate," Journal of Development Economics, Elsevier, vol. 86(2), pages 242-262, June.
    11. Nelson B. Villoria & Thomas W. Hertel, 2011. "Geography Matters: International Trade Patterns and the Indirect Land Use Effects of Biofuels," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 919-935.
    12. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    13. Bhattarai, Madhusudan & Hammig, Michael, 2001. "Institutions and the Environmental Kuznets Curve for Deforestation: A Crosscountry Analysis for Latin America, Africa and Asia," World Development, Elsevier, vol. 29(6), pages 995-1010, June.
    14. Monica Fisher & Gerald E. Shively & Steven Buccola, 2005. "Activity Choice, Labor Allocation, and Forest Use in Malawi," Land Economics, University of Wisconsin Press, vol. 81(4).
    15. Thomas W. Hertel, 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?-super- 1," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 259-275.
    16. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685.
    17. Angelsen, Arild, 1999. "Agricultural expansion and deforestation: modelling the impact of population, market forces and property rights," Journal of Development Economics, Elsevier, vol. 58(1), pages 185-218, February.
    18. Deininger, Klaus W & Minten, Bart, 1999. "Poverty, Policies, and Deforestation: The Case of Mexico," Economic Development and Cultural Change, University of Chicago Press, vol. 47(2), pages 313-344, January.
    19. Klaus Deininger & Derek Byerlee & Jonathan Lindsay & Andrew Norton & Harris Selod & Mercedes Stickler, 2011. "Rising Global Interest in Farmland : Can it Yield Sustainable and Equitable Benefits?," World Bank Publications, The World Bank, number 2263, December.
    20. Lee, Huey-Lin & Hertel, Thomas & Rose, Steven & Avetisyan, Misak, 2008. "An Integrated Global Land Use Data Base for CGE Analysis of Climate Policy Options," GTAP Working Papers 2603, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    21. Steven K. Rose & Alla A. Golub & Brent Sohngen, 2013. "Total Factor and Relative Agricultural Productivity and Deforestation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 426-434.
    22. Barbier, E B & Burgess, J C, 2001. " The Economics of Tropical Deforestation," Journal of Economic Surveys, Wiley Blackwell, vol. 15(3), pages 413-433, July.
    23. Petr Havlík & Hugo Valin & Aline Mosnier & Michael Obersteiner & Justin S. Baker & Mario Herrero & Mariana C. Rufino & Erwin Schmid, 2013. "Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 442-448.
    24. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    25. A. Mosnier & P. Havlík & M. Obersteiner & K. Aoki & E. Schmid & S. Fritz & I. McCallum & S. Leduc, 2014. "Modeling Impact of Development Trajectories and a Global Agreement on Reducing Emissions from Deforestation on Congo Basin Forests by 2030," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(4), pages 505-525, April.
    26. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    27. Fisher, Monica G. & Shively, Gerald E., 2007. "Agricultural Subsidies and Forest Pressure in Malawi's Miombo Woodlands," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(2), pages 1-14, August.
    28. Gerald E. Shively, 2001. "Agricultural Change, Rural Labor Markets, and Forest Clearing: An Illustrative Case from the Philippines," Land Economics, University of Wisconsin Press, vol. 77(2), pages 268-284.
    29. Cropper, Maureen & Griffiths, Charles, 1994. "The Interaction of Population Growth and Environmental Quality," American Economic Review, American Economic Association, vol. 84(2), pages 250-254, May.
    30. Hayami, Yujiro & Ruttan, V W, 1970. "Factor Prices and Technical Change in Agricultural Development: The United States and Japan, 1880-1960," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1115-1141, Sept.-Oct.
    31. Gerald Shively & Monica Fisher, 2004. "Smallholder Labor and Deforestation: A Systems Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(5), pages 1361-1366.
    32. Nelson B. Villoria & Alla Golub & Derek Byerlee & James Stevenson, 2013. "Will Yield Improvements on the Forest Frontier Reduce Greenhouse Gas Emissions? A Global Analysis of Oil Palm," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1301-1308.
    33. Andrew D. Foster & Mark R. Rosenzweig, 2003. "Economic Growth and the Rise of Forests," The Quarterly Journal of Economics, Oxford University Press, vol. 118(2), pages 601-637.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-24, May.
    2. Schwerhoff, Gregor & Wehkamp, Johanna, 2018. "Export tariffs combined with public investments as a forest conservation policy instrument," Forest Policy and Economics, Elsevier, vol. 95(C), pages 69-84.
    3. Jaza Folefack, Achille Jean & Ngo Njiki, Marie Gaelle & Darr, Dietrich, 2019. "Safeguarding forests from smallholder oil palm expansion by more intensive production? The case of Ngwei forest (Cameroon)," Forest Policy and Economics, Elsevier, vol. 101(C), pages 45-61.
    4. Beckman, Jayson & Sands, Ronald D. & Riddle, Anne A. & Lee, Tani & Walloga, Jacob M., 2017. "International Trade and Deforestation: Potential Policy Effects via a Global Economic Model," Economic Research Report 262185, United States Department of Agriculture, Economic Research Service.
    5. Silva, Felipe & Fulginiti, Lilyan E. & Perrin, Richard K., 2016. "Did technical change in agricultural production decrease the emission of pollutants on the Amazon Forest during 1990-2009?," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230092, Southern Agricultural Economics Association.
    6. Rodriguez Garcia, V. & Meyfroidt, P. & Gaspart, F., 2018. "Agricultural intensification and land use change: A panel cointegration approach to test induced intensification, land sparing and rebound-effect," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277206, International Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:apecpp:v:36:y:2014:i:2:p:211-237.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.