IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Heterogeneous Demand for Food Diversity: A Quantile Regression Analysis

Listed author(s):
  • Drescher, Larissa S.
  • Goddard, Ellen W.

Poverty and inequality studies frequently use the quantile regression approach to provide results on the impact of determinants at different points of the distribution of a dependent variable. To innovate diversity research this paper uses quantile regressions to identify determinants at different points of the food diversity distribution. Regional and household level differences in demand for food diversity are analysed based on a pooled sample of Canadian data of the Family Food Expenditure Surveys of Statistics Canada. Simple OLS regressions show that the determinants of Canadian diversity demand are similar to those of other developed countries. However, with quantile regressions significantly different effects of independent variables on diversity across quantiles are observed. In most cases, low diversified households, especially those in the lower 10% quantile of the distribution, are much more affected by key determinants such as household size, (real) income and age than higher-diversified households. Results further reveal that the demand for food diversity is not stable over time but is lower in 1996 and 2001 than in 1984. The diversity decline over time is higher for households in the middle quantiles compared to the moderate decline for households located at the ends of the diversity distribution. In Armuts- und Ungleichheitsstudien sind Quantil-Regressionen eine häufig angewandte Methode um den Einfluss von Determinanten an verschiedenen Punkten der Verteilung einer abhängigen Variablen zu identifizieren. Um die bestehende Lebensmittelvielfaltsliteratur zu erweitern, werden in diesem Beitrag Quantil-Regressionen dafür genutzt, Nachfragedeterminanten an verschiedenen Stellen der Lebensmittelvielfaltsverteilung zu bestimmen. Dabei werden sowohl regionale als auch weitere haushaltsspezifische Unterschiede in der Nachfrage basierend auf einem gepoolten kanadischen Datensatz identifiziert. Ergebnisse einfacher Regressionen bestätigen, dass die Nachfrage nach Lebensmittelvielfalt in Kanada von ähnlichen Determinanten bestimmt ist wie in anderen Ländern. Die Quantil-Regressionen zeigen allerdings, dass je nach Quantil signifikant unterschiedliche Einflüsse auf die Vielfaltsnachfrage vorliegen. In den meisten Fällen sind die Haushalte mit der geringsten Vielfaltsnachfrage, insbesondere solche im unteren 10%-Quantil, am stärksten beeinflusst durch Schlüsselgrößen wie Haushaltsgröße, (Real)einkommen und Alter als Haushalte mit einer höheren Nachfrage nach Vielfalt. Die Ergebnisse zeigen auch, dass die Vielfaltnachfrage über die Zeit nicht konstant ist, sondern 1996 und 2001 niedriger ist als 1984. Der Rückgang in der Vielfaltsnachfrage über die Zeit ist größer bei Haushalten in den mittleren Quantilen im Vergleich Haushalten an den Enden der Vielfaltsverteilung.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by German Association of Agricultural Economists (GEWISOLA) in its series 51st Annual Conference, Halle, Germany, September 28-30, 2011 with number 114484.

in new window

Date of creation: 2011
Handle: RePEc:ags:gewi11:114484
Contact details of provider: Postal:
Bundesallee 50, 38116 Braunschweig

Phone: 0531 / 596 5501
Fax: 0531 / 596 5599
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Koenker, Roger, 2000. "Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics," Journal of Econometrics, Elsevier, vol. 95(2), pages 347-374, April.
  2. Fattouh, Bassam & Scaramozzino, Pasquale & Harris, Laurence, 2005. "Capital structure in South Korea: a quantile regression approach," Journal of Development Economics, Elsevier, vol. 76(1), pages 231-250, February.
  3. Kandpal, Eeshani & McNamara, Paul E., 2009. "Determinants of Nutritional Outcomes of Children in India: A Quantile Regression Approach," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49415, Agricultural and Applied Economics Association.
  4. Omar Arias & Walter Sosa-Escudero & Kevin F. Hallock, 2001. "Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data," Empirical Economics, Springer, vol. 26(1), pages 7-40.
  5. Berry, Charles H, 1971. "Corporate Growth and Diversification," Journal of Law and Economics, University of Chicago Press, vol. 14(2), pages 371-384, October.
  6. Theil, Henri & Finke, Renate, 1983. "The consumer's demand for diversity," European Economic Review, Elsevier, vol. 23(3), pages 395-400, September.
  7. Hayden Stewart & J. Michael Harris, 2005. "Obstacles to Overcome in Promoting Dietary Variety: The Case of Vegetables," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(1), pages 21-36.
  8. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
  9. Thiele, S. & Weiss, C., 2003. "Consumer demand for food diversity: evidence for Germany," Food Policy, Elsevier, vol. 28(2), pages 99-115, April.
  10. Joachim Zietz & Emily Zietz & G. Sirmans, 2008. "Determinants of House Prices: A Quantile Regression Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 37(4), pages 317-333, November.
  11. Beatrice Rangvid, 2007. "School composition effects in Denmark: quantile regression evidence from PISA 2000," Empirical Economics, Springer, vol. 33(2), pages 359-388, September.
  12. Wanki Moon & Wojciech Florkowski & Larry Beuchat & Anna Resurreccion & Pavlina Paraskova & Jordan Jordanov & Manjeet Chinnan, 2002. "Demand for food variety in an emerging market economy," Applied Economics, Taylor & Francis Journals, vol. 34(5), pages 573-581.
  13. Jackson, Laurence Fraser, 1984. "Hierarchic Demand and the Engel Curve for Variety," The Review of Economics and Statistics, MIT Press, vol. 66(1), pages 8-15, February.
  14. Roger Koenker, 2000. "Inference on the Quantile Regression Process," Econometric Society World Congress 2000 Contributed Papers 0886, Econometric Society.
  15. Jayachandran N. Variyam & James Blaylock & David Smallwood, 2002. "Characterizing the Distribution of Macronutrient Intake among U.S. Adults: A Quantile Regression Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 454-466.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:gewi11:114484. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.