IDEAS home Printed from https://ideas.repec.org/f/pzh800.html
   My authors  Follow this author

Bowen Zhang

Personal Details

First Name:Bowen
Middle Name:
Last Name:Zhang
Suffix:
RePEc Short-ID:pzh800

Research output

as
Jump to: Articles

Articles

  1. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
  2. Paredes, P. & Wei, Z. & Liu, Y. & Xu, D. & Xin, Y. & Zhang, B. & Pereira, L.S., 2015. "Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain," Agricultural Water Management, Elsevier, vol. 152(C), pages 57-71.
  3. B. Zhang & J.S. Lv & J.X. Zuo, 2014. "Theoretical and experimental study on solar ejector cooling system using R236fa," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(4), pages 245-249.
  4. B Zhang & C T Ng & T C E Cheng, 2014. "Multi-period empty container repositioning with stochastic demand and lost sales," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 302-319, February.
  5. B Zhang & J Wang & L Meng & C Zhu & R Nie, 2014. "Estimating returns to scale of Chinese airport airside activities using the CCR-0-objective RTS method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 755-762, May.
  6. B Zhang & P Murali & M M Dessouky & D Belson, 2009. "A mixed integer programming approach for allocating operating room capacity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 663-673, May.
  7. W. Xu & B. Zhang & Z. Wang & S. Chu & W. Li & Z. Wu & R. Yu & X. Zhang, 2008. "Scaling law of anomalous Hall effect in Fe/Cu bilayers," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 233-237, September.
  8. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.
  9. Zhang, B. & Stein, M., 1993. "Kernel Approximations for Universal Kriging Predictors," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 286-313, February.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.

    Cited by:

    1. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    2. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    3. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, Open Access Journal, vol. 10(5), pages 1-17, May.
    4. Xiaopeng Wang & Xiang Chen & Yiman Cheng & Luyao Zhou & Yi Li & Yongliang Yang, 2020. "Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry," Energies, MDPI, Open Access Journal, vol. 13(7), pages 1-13, April.
    5. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    6. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    7. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    8. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    9. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    10. Wang, Zhaohua & Li, Yiming & Cai, Hailin & Yang, Yuantao & Wang, Bo, 2019. "Regional difference and drivers in China's carbon emissions embodied in internal trade," Energy Economics, Elsevier, vol. 83(C), pages 217-228.
    11. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    12. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, Open Access Journal, vol. 12(10), pages 1-14, May.
    13. Min Huang & Yimin Chen & Yuanying Zhang, 2018. "Assessing Carbon Footprint and Inter-Regional Carbon Transfer in China Based on a Multi-Regional Input-Output Model," Sustainability, MDPI, Open Access Journal, vol. 10(12), pages 1-13, December.
    14. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    15. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    16. Xin Li & Xiandan Cui & Minxi Wang, 2017. "Analysis of China’s Carbon Emissions Base on Carbon Flow in Four Main Sectors: 2000–2013," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-13, April.
    17. Zheng, Hongmei & Li, Aimin & Meng, Fanxin & Liu, Gengyuan, 2020. "Energy flows embodied in China's interregional trade: Case study of Hebei Province," Ecological Modelling, Elsevier, vol. 428(C).
    18. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    19. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    20. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    21. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    22. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    23. Wang, Zhenyu & Meng, Jing & Zheng, Heran & Shao, Shuai & Wang, Daoping & Mi, Zhifu & Guan, Dabo, 2018. "Temporal change in India’s imbalance of carbon emissions embodied in international trade," Applied Energy, Elsevier, vol. 231(C), pages 914-925.
    24. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    25. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, Open Access Journal, vol. 13(15), pages 1-25, July.
    26. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    27. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    28. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    29. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, Open Access Journal, vol. 11(16), pages 1-22, August.
    30. Zhang, Zengkai & Zhu, Kunfu, 2017. "Border carbon adjustments for exports of the United States and the European Union: Taking border-crossing frequency into account," Applied Energy, Elsevier, vol. 201(C), pages 188-199.
    31. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    32. Wu, X.F. & Chen, G.Q., 2017. "Energy use by Chinese economy: A systems cross-scale input-output analysis," Energy Policy, Elsevier, vol. 108(C), pages 81-90.
    33. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    34. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    35. Yawen Han & Shigemi Kagawa & Fumiya Nagashima & Keisuke Nansai, 2019. "Sources of China’s Fossil Energy-Use Change," Energies, MDPI, Open Access Journal, vol. 12(4), pages 1-16, February.
    36. Han, Mengyao & Xiong, Jiao & Wang, Siyuan & Yang, Yu, 2020. "Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation," Energy Policy, Elsevier, vol. 144(C).

  2. Paredes, P. & Wei, Z. & Liu, Y. & Xu, D. & Xin, Y. & Zhang, B. & Pereira, L.S., 2015. "Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain," Agricultural Water Management, Elsevier, vol. 152(C), pages 57-71.

    Cited by:

    1. Xu, Junzeng & Bai, Wenhuan & Li, Yawei & Wang, Haiyu & Yang, Shihong & Wei, Zheng, 2019. "Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 289-297.
    2. Han, Congying & Zhang, Baozhong & Chen, He & Liu, Yu & Wei, Zheng, 2020. "Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    5. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    7. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    8. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    9. Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
    10. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    11. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    12. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.

  3. B. Zhang & J.S. Lv & J.X. Zuo, 2014. "Theoretical and experimental study on solar ejector cooling system using R236fa," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(4), pages 245-249.

    Cited by:

    1. Mosaffa, A.H. & Farshi, L. Garousi, 2018. "Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications," Renewable Energy, Elsevier, vol. 120(C), pages 134-150.

  4. B Zhang & C T Ng & T C E Cheng, 2014. "Multi-period empty container repositioning with stochastic demand and lost sales," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 302-319, February.

    Cited by:

    1. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    2. Wadhwa, Satpal Singh & Farahmand, Kambiz & Vachal, Kimberly, 2019. "A deterministic mathematical model to support future investment decisions for developing inland container terminals," Research in Transportation Economics, Elsevier, vol. 77(C).
    3. Xie, Yangyang & Liang, Xiaoying & Ma, Lijun & Yan, Houmin, 2017. "Empty container management and coordination in intermodal transport," European Journal of Operational Research, Elsevier, vol. 257(1), pages 223-232.
    4. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2019. "Encroachment and canvassing strategy in a sea-cargo service chain with empty container repositioning," European Journal of Operational Research, Elsevier, vol. 276(1), pages 175-186.

  5. B Zhang & P Murali & M M Dessouky & D Belson, 2009. "A mixed integer programming approach for allocating operating room capacity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 663-673, May.

    Cited by:

    1. Zexian Zeng & Xiaolei Xie & Heidi Menaker & Susan G. Sanford-Ring & Jingshan Li, 2018. "Performance evaluation of operating room schedules in orthopedic surgery," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 198-223, June.
    2. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Michael R. Wagner & Zinovy Radovilsky, 2012. "Optimizing Boat Resources at the U.S. Coast Guard: Deterministic and Stochastic Models," Operations Research, INFORMS, vol. 60(5), pages 1035-1049, October.
    5. Mahdi Noorizadegan & Abbas Seifi, 2018. "An efficient computational method for large scale surgery scheduling problems with chance constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 535-561, March.
    6. Brecht Cardoen & Jeroen Beliën & Mario Vanhoucke, 2015. "On the design of custom packs: grouping of medical disposable items for surgeries," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7343-7359, December.
    7. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    8. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    9. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    10. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.

  6. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.

    Cited by:

    1. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    2. Aiping Jiang & Qiuguo Chi & Junjun Gao & Maoguo Wu, 2019. "An Integrated Approach to Forecasting Intermittent Demand for Electric Power Materials," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1309-1335, April.
    3. Sinan Apak, 2015. "A Bayesian Approach Proposal For Inventory Cost and Demand Forecasting," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 41-48, December.
    4. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    5. Z Hua & J Yang & F Huang & X Xu, 2009. "A static-dynamic strategy for spare part inventory systems with nonstationary stochastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1254-1263, September.
    6. Gary Mitchell & Meike Niederhausen, 2010. "On Replenishing Items with Seasonal Intermittent Demand," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 90-102, March.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Bowen Zhang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.