IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i24p7343-7359.html
   My bibliography  Save this article

On the design of custom packs: grouping of medical disposable items for surgeries

Author

Listed:
  • Brecht Cardoen
  • Jeroen Beliën
  • Mario Vanhoucke

Abstract

A custom pack combines medical disposable items into a single sterile package that is used for surgical procedures. Although custom packs are gaining importance in hospitals due to their potential benefits in reducing surgery setup times, little is known on methodologies to configure them, especially if the number of medical items, procedure types and surgeons is large. In this paper, we propose a mathematical programming approach to guide hospitals in developing or reconfiguring their custom packs. In particular, we are interested in minimising points of touch, which we define as a measure for physical contact between staff and medical materials. Starting from an integer non-linear programming model, we develop both an exact linear programming (LP) solution approach and an LP-based heuristic. Next, we also describe a simulated annealing approach to benchmark the mathematical programming methods. A computational experiment, based on real data of a medium-sized Belgian hospital, compares the optimised results with the performance of the hospital’s current configuration settings and indicates how to improve future usage. Next to this base case, we introduce scenarios in which we examine to what extent the results are sensitive for waste, i.e. adding more items to the custom pack than is technically required for some of the custom pack’s procedures, since this can increase its applicability towards other procedures. We point at some interesting insights that can be taken up by the hospital management to guide the configuration and accompanying negotiation processes.

Suggested Citation

  • Brecht Cardoen & Jeroen Beliën & Mario Vanhoucke, 2015. "On the design of custom packs: grouping of medical disposable items for surgeries," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7343-7359, December.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7343-7359
    DOI: 10.1080/00207543.2015.1061221
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1061221
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1061221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B Zhang & P Murali & M M Dessouky & D Belson, 2009. "A mixed integer programming approach for allocating operating room capacity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 663-673, May.
    2. Stolletz, Raik & Brunner, Jens O., 2012. "Fair optimization of fortnightly physician schedules with flexible shifts," European Journal of Operational Research, Elsevier, vol. 219(3), pages 622-629.
    3. Reymondon, Francis & Pellet, Bertrand & Marcon, Eric, 2008. "Optimization of hospital sterilization costs proposing new grouping choices of medical devices into packages," International Journal of Production Economics, Elsevier, vol. 112(1), pages 326-335, March.
    4. Agard, Bruno & Penz, Bernard, 2009. "A simulated annealing method based on a clustering approach to determine bills of materials for a large product family," International Journal of Production Economics, Elsevier, vol. 117(2), pages 389-401, February.
    5. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    6. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    2. Daniel Gartner & Yiye Zhang & Rema Padman, 2018. "Cognitive workload reduction in hospital information systems," Health Care Management Science, Springer, vol. 21(2), pages 224-243, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    2. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    3. Zexian Zeng & Xiaolei Xie & Heidi Menaker & Susan G. Sanford-Ring & Jingshan Li, 2018. "Performance evaluation of operating room schedules in orthopedic surgery," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 198-223, June.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    6. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    7. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    8. Antti Peltokorpi, 2011. "How do strategic decisions and operative practices affect operating room productivity?," Health Care Management Science, Springer, vol. 14(4), pages 370-382, November.
    9. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    10. repec:ipg:wpaper:14 is not listed on IDEAS
    11. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    12. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    13. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    14. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    15. Weiya Zhong & Yun Shi, 2018. "Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 108-125, January.
    16. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    17. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    18. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    19. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    20. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    21. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    22. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7343-7359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.