IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i1p69-83.html
   My bibliography  Save this article

A new approach to forecasting intermittent demand based on the mixed zero‐truncated Poisson model

Author

Listed:
  • Aiping Jiang
  • Kwok Leung Tam
  • Xiaoyun Guo
  • Yufeng Zhang

Abstract

This paper proposes a new approach to forecasting intermittent demand by considering the effects of external factors. We classify intermittent demand data into two parts—zero value and nonzero value—and fit nonzero values into a mixed zero‐truncated Poisson model. All the parameters in this model are obtained by an EM algorithm, which regards external factors as independent variables of a logistic regression model and log‐linear regression model. We then calculate the probability of occurrence of zero value at each period and predict demand occurrence by comparing it with critical value. When demand occurs, we use the weighted average of the mixed zero‐truncated Poisson model as predicted nonzero demands, which are combined with predicted demand occurrences to form the final forecasting demand series. Two performance measures are developed to assess the forecasting methods. By presenting a case study of electric power material from the State Grid Shanghai Electric Power Company in China, we show that our approach provides greater accuracy in forecasting than the Poisson model, the hurdle shifted Poisson model, the hurdle Poisson model, and Croston's method.

Suggested Citation

  • Aiping Jiang & Kwok Leung Tam & Xiaoyun Guo & Yufeng Zhang, 2020. "A new approach to forecasting intermittent demand based on the mixed zero‐truncated Poisson model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 69-83, January.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:69-83
    DOI: 10.1002/for.2614
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2614
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Snyder, Ralph, 2002. "Forecasting sales of slow and fast moving inventories," European Journal of Operational Research, Elsevier, vol. 140(3), pages 684-699, August.
    2. Wallström, Peter & Segerstedt, Anders, 2010. "Evaluation of forecasting error measurements and techniques for intermittent demand," International Journal of Production Economics, Elsevier, vol. 128(2), pages 625-636, December.
    3. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    4. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    5. Teunter, Ruud & Sani, Babangida, 2009. "On the bias of Croston's forecasting method," European Journal of Operational Research, Elsevier, vol. 194(1), pages 177-183, April.
    6. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    7. Matheus, Peter & Gelders, Ludo, 2000. "The (R, Q) inventory policy subject to a compound Poisson demand pattern," International Journal of Production Economics, Elsevier, vol. 68(3), pages 307-317, December.
    8. Leven, Erik & Segerstedt, Anders, 2004. "Inventory control with a modified Croston procedure and Erlang distribution," International Journal of Production Economics, Elsevier, vol. 90(3), pages 361-367, August.
    9. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    10. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    11. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    12. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.
    13. Lindsey, Matthew & Pavur, Robert, 2009. "Prediction intervals for future demand of existing products with an observed demand of zero," International Journal of Production Economics, Elsevier, vol. 119(1), pages 75-89, May.
    14. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amniattalab, Ayda & Frenk, J.B.G. & Hekimoğlu, Mustafa, 2023. "On spare parts demand and the installed base concept: A theoretical approach," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    2. Aiping Jiang & Qiuguo Chi & Junjun Gao & Maoguo Wu, 2019. "An Integrated Approach to Forecasting Intermittent Demand for Electric Power Materials," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1309-1335, April.
    3. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    4. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    5. Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
    6. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    7. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    8. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
    9. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    10. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    13. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    14. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    15. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    16. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    17. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    18. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    19. Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
    20. Petropoulos, Fotios & Kourentzes, Nikolaos & Nikolopoulos, Konstantinos, 2016. "Another look at estimators for intermittent demand," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 154-161.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:69-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.