IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v77y2019ics0739885919302768.html
   My bibliography  Save this article

A deterministic mathematical model to support future investment decisions for developing inland container terminals

Author

Listed:
  • Wadhwa, Satpal Singh
  • Farahmand, Kambiz
  • Vachal, Kimberly

Abstract

Agriculture is a leading sector in the Midwest economy. Grain production is particularly important to the natural resource-based economy of the upper Midwest. Exporters are at a competitive disadvantage when they are unable to obtain containers at a reasonable cost. To mitigate this shortage of containers and avoid excessive empty vehicle miles, it is proposed to strategically establish inland depots in regions with sufficiently high trade volumes. Inland depots would minimize total system costs for empty container repositioning while providing customers with desired levels of service. Mathematical models are formulated to evaluate the proposed system and implementation is performed as a case study for soybean container shipments in the study region of Minnesota. The proposed system has been demonstrated to significantly reduce empty vehicle miles travelled and total system costs, yielding benefits to regional exporters and individual stakeholders. Findings show that even if soybean trade volumes in the region remain static or decrease, inland depots will still result in noteworthy system cost and empty vehicle mile savings. Finally, the model can be applied similarly to other commodities and/or be used to analyze the potential for new intermodal points.

Suggested Citation

  • Wadhwa, Satpal Singh & Farahmand, Kambiz & Vachal, Kimberly, 2019. "A deterministic mathematical model to support future investment decisions for developing inland container terminals," Research in Transportation Economics, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:retrec:v:77:y:2019:i:c:s0739885919302768
    DOI: 10.1016/j.retrec.2019.100764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885919302768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2019.100764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quang-Vinh Dang & Izabela Ewa Nielsen & Won-Young Yun, 2013. "Replenishment policies for empty containers in an inland multi-depot system," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(1), pages 120-149, March.
    2. Dong-ping Song & Jing-xin Dong, 2011. "Flow balancing-based empty container repositioning in typical shipping service routes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 13(1), pages 61-77, March.
    3. Rafael Epstein & Andres Neely & Andres Weintraub & Fernando Valenzuela & Sergio Hurtado & Guillermo Gonzalez & Alex Beiza & Mauricio Naveas & Florencio Infante & Fernando Alarcon & Gustavo Angulo & Cr, 2012. "A Strategic Empty Container Logistics Optimization in a Major Shipping Company," Interfaces, INFORMS, vol. 42(1), pages 5-16, February.
    4. B Zhang & C T Ng & T C E Cheng, 2014. "Multi-period empty container repositioning with stochastic demand and lost sales," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 302-319, February.
    5. Long, Yin & Lee, Loo Hay & Chew, Ek Peng, 2012. "The sample average approximation method for empty container repositioning with uncertainties," European Journal of Operational Research, Elsevier, vol. 222(1), pages 65-75.
    6. Young Yun, Won & Mi Lee, Yu & Seok Choi, Yong, 2011. "Optimal inventory control of empty containers in inland transportation system," International Journal of Production Economics, Elsevier, vol. 133(1), pages 451-457, September.
    7. Jasmine Siu Lee Lam & Eddy van de Voorde, 2011. "Scenario analysis for supply chain integration in container shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(7), pages 705-725, April.
    8. Olaf Merk & Thai-Thanh Dang, 2012. "Efficiency of World Ports in Container and Bulk Cargo (oil, coal, ores and grain)," OECD Regional Development Working Papers 2012/9, OECD Publishing.
    9. Wetzstein, Brian & Florax, Raymond & Foster, Ken & Binkley, James, 2016. "Forecasting Agricultural Commodity Transportation Costs: Mississippi River Barge Rates," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235947, Agricultural and Applied Economics Association.
    10. Berwick, Mark & Bitzan, John & Lantz, Brenda & Tolliver, Denver & Vachal, Kimberly, 2001. "North Dakota Strategic Freight Analysis Agricultural Sector," MPC Reports 231681, North Dakota State University, Upper Great Plains Transportation Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    2. Xie, Yangyang & Liang, Xiaoying & Ma, Lijun & Yan, Houmin, 2017. "Empty container management and coordination in intermodal transport," European Journal of Operational Research, Elsevier, vol. 257(1), pages 223-232.
    3. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    4. Kolar, Petr & Schramm, Hans-Joachim & Prockl, Günter, 2018. "Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland," Journal of Transport Geography, Elsevier, vol. 69(C), pages 73-82.
    5. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
    6. Xing, Xinjie & Drake, Paul R. & Song, Dongping & Zhou, Yang, 2019. "Tank Container Operators’ profit maximization through dynamic operations planning integrated with the quotation-booking process under multiple uncertainties," European Journal of Operational Research, Elsevier, vol. 274(3), pages 924-946.
    7. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    8. Yi Zhao & Qingwan Xue & Xi Zhang, 2018. "Stochastic Empty Container Repositioning Problem with CO 2 Emission Considerations for an Intermodal Transportation System," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    9. Najafi, Mehdi & Zolfagharinia, Hossein, 2021. "Pricing and quality setting strategy in maritime transportation: Considering empty repositioning and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    11. Zirui Liang & Ryuichi Shibasaki & Yuji Hoshino, 2021. "Do Foldable Containers Enhance Efficient Empty Container Repositioning under Demand Fluctuation?—Case of the Pacific Region," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    12. Yang, Yu & Ridouane, Yassine & Boland, Natashia & Erera, Alan & Savelsbergh, Martin, 2022. "Substitution-based equipment balancing in service networks with multiple equipment types," European Journal of Operational Research, Elsevier, vol. 300(3), pages 966-978.
    13. Behzad Behdani & Bart Wiegmans & Violeta Roso & Hercules Haralambides, 2020. "Port-hinterland transport and logistics: emerging trends and frontier research," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 1-25, March.
    14. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    15. Goh, Shao Hung & Chan, Yuxian, 2016. "Operational shadow pricing in back haul container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 92(C), pages 3-15.
    16. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    17. Lorena Para‐González & Carlos Mascaraque‐Ramírez, 2020. "The six dimensions of CSR as a driver of key results in the shipbuilding industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(2), pages 576-584, March.
    18. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    19. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    20. Bernard G. Zweers & Sandjai Bhulai & Rob D. Mei, 2021. "Planning hinterland container transportation in congested deep-sea terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 583-622, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:77:y:2019:i:c:s0739885919302768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.