IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1683-d340818.html
   My bibliography  Save this article

Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry

Author

Listed:
  • Xiaopeng Wang

    (Ecological Civilization Research Center of Zhejiang Province, School of economics and management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Xiang Chen

    (Ecological Civilization Research Center of Zhejiang Province, School of economics and management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Yiman Cheng

    (Ecological Civilization Research Center of Zhejiang Province, School of economics and management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Luyao Zhou

    (Ecological Civilization Research Center of Zhejiang Province, School of economics and management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Yi Li

    (East China Sea Institute/Collaborative innovation center of Port Economy, Ningbo University, Ningbo 315211, China
    Fashion Department of International United Faculty between Ningbo University and University of Angers/Faculty of Tourism and Culture, Ningbo University, Ningbo 315201, China)

  • Yongliang Yang

    (Ecological Civilization Research Center of Zhejiang Province, School of economics and management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

To present great environmental pressure from energy consumption during textile production, this paper calculates the energy footprint (EFP) of Shaoxing’s textile industry, from 2005 to 2018. Moreover, this study analyzes the relationship between Shaoxing’s textile industry energy consumption and economic development by using decoupling theory. Furthermore, the Logarithmic Mean Divisia Index decomposition method was employed to investigate the main factors that affect the EFP of Shaoxing’s textile industry. Research results show the following: (1) The growth rate of the total output value of Shaoxing’s textile industry was greater than the growth rate of the EFP, from 2005 to 2007. Thus, the decoupling state showed a weak decoupling, and EFP intensity decreased. (2) The EFP and economic growth were mainly based on the strong decoupling of Shaoxing’s textile industry from 2008 to 2015 (except for 2011), and EFP intensity declined further. (3) Economic recession in the textile industry was severe in Shaoxing, from 2016 to 2018, and the EFP also showed a downward trend. The state of decoupling appeared as a recessive decoupling (2016) and a weak negative decoupling (2017 and 2018), and EFP intensity first increased and then decreased. (4) The total effect of the factors affecting the EFP of the textile industry in Shaoxing demonstrated a pulling trend, and industrial scale played a significant role in driving the EFP. The energy consumption intensity effect contributed the largest restraint. This paper fills in the gaps in the environmental regulation means and methods of pillar industrial clusters in specific regions.

Suggested Citation

  • Xiaopeng Wang & Xiang Chen & Yiman Cheng & Luyao Zhou & Yi Li & Yongliang Yang, 2020. "Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry," Energies, MDPI, vol. 13(7), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1683-:d:340818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, B. & Chen, G.Q. & Yang, Z.F. & Jiang, M.M., 2007. "Ecological footprint accounting for energy and resource in China," Energy Policy, Elsevier, vol. 35(3), pages 1599-1609, March.
    2. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    3. Yi Li & Lili Ding & Yongliang Yang, 2020. "Can the Introduction of an Environmental Target Assessment Policy Improve the TFP of Textile Enterprises? A Quasi-Natural Experiment Based on the Huai River Basin in China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    4. Laili Wang & Yi Li & Wanwen He, 2017. "The Energy Footprint of China’s Textile Industry: Perspectives from Decoupling and Decomposition Analysis," Energies, MDPI, vol. 10(10), pages 1-11, September.
    5. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    6. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    7. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    8. Ozturk, Harun Kemal, 2005. "Energy usage and cost in textile industry: A case study for Turkey," Energy, Elsevier, vol. 30(13), pages 2424-2446.
    9. Lenzen, Manfred & Dey, Christopher, 2000. "Truncation error in embodied energy analyses of basic iron and steel products," Energy, Elsevier, vol. 25(6), pages 577-585.
    10. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    11. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
    12. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    13. Yi Li & Yan Luo & Yingzi Wang & Laili Wang & Manhong Shen, 2017. "Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    14. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    15. Zhao, Hongli & Lin, Boqiang, 2019. "Resources allocation and more efficient use of energy in China's textile industry," Energy, Elsevier, vol. 185(C), pages 111-120.
    16. Guo, Shan & Zheng, Shupeng & Hu, Yunhao & Hong, Jingke & Wu, Xiaofang & Tang, Miaohan, 2019. "Embodied energy use in the global construction industry," Applied Energy, Elsevier, vol. 256(C).
    17. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    18. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    19. Yu Hao & Zirui Huang & Haitao Wu, 2019. "Do Carbon Emissions and Economic Growth Decouple in China? An Empirical Analysis Based on Provincial Panel Data," Energies, MDPI, vol. 12(12), pages 1-15, June.
    20. Jeffrey Wilson & Peter Tyedmers & Jill Grant, 2013. "Measuring environmental impact at the neighbourhood level," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 42-60, January.
    21. Kenourgios, Dimitris & Drakonaki, Emmanouela & Dimitriou, Dimitrios, 2019. "ECB’s unconventional monetary policy and cross-financial-market correlation dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    22. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    23. Gilles Le Blanc & Mathieu Bordigoni & Alain Hita, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Post-Print hal-00768525, HAL.
    24. Chen, Z.M. & Chen, G.Q., 2011. "An overview of energy consumption of the globalized world economy," Energy Policy, Elsevier, vol. 39(10), pages 5920-5928, October.
    25. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    26. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    27. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    28. Yu Zhang & Xiaojiao Zou & Caifen Xu & Qingshan Yang, 2018. "Decoupling Greenhouse Gas Emissions from Crop Production: A Case Study in the Heilongjiang Land Reclamation Area, China," Energies, MDPI, vol. 11(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenny Palm & Nancy Bocken, 2021. "Achieving the Circular Economy: Exploring the Role of Local Governments, Business and Citizens in an Urban Context," Energies, MDPI, vol. 14(4), pages 1-5, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    2. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    3. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    4. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    5. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    7. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    8. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    9. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    10. Laili Wang & Yi Li & Wanwen He, 2017. "The Energy Footprint of China’s Textile Industry: Perspectives from Decoupling and Decomposition Analysis," Energies, MDPI, vol. 10(10), pages 1-11, September.
    11. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    12. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    13. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    14. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    15. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    16. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    17. Tang, Xu & Snowden, Simon & Höök, Mikael, 2013. "Analysis of energy embodied in the international trade of UK," Energy Policy, Elsevier, vol. 57(C), pages 418-428.
    18. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    19. Gasim, Anwar A., 2015. "The embodied energy in trade: What role does specialization play?," Energy Policy, Elsevier, vol. 86(C), pages 186-197.
    20. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1683-:d:340818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.