IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Bringing Regional Detail to a CGE Model using Census Data

  • Glyn Wittwer
  • Mark Horridge

Abstract The number of regions and sectors in most regional CGE models is small, due to data and computing limitations. The uses of such models will broaden if they have larger CGE databases. The TERM model combines a massive database with a variable aggregation facility and techniques to economize on computing capacity. This paper goes further, by outlining the use of small-region census data to devise a CGE database with an unprecedented number of regions. Already, the original TERM methodology has been used to devise multi-regional models for a number of countries. Census detail could enhance the detail in these models. Here we group small regions of Australia to develop the first bottom-up regional CGE model which distinguishes all 150 Federal single-seat electoral districts. Introduire des détails à l’échelle régionale dans un modèle CGE en utilisant les données de recensements Rèsumè Le nombre de régions et de secteurs dans la plupart des modèles CGE régionaux est limité, en raison des limitations des données et du calcul. Il est possible de généraliser les applications de ces modèles en les dotant de bases de données de CGE plus importantes. Le modèle TERM allie une base de données considérable à une fonction et des techniques d'agrégation variables permettant d’économiser sur la capacité de calcul. Cette communication va plus loin, et décrit l'application de données découlant de recensements pour des petites régions pour concevoir une base de données CGE avec un nombre de régions sans précédent. La méthodologie initiale TERM a déjà été utilisée pour concevoir des modèles multirégionaux pour un certain nombre de pays. Le détail de ce recensement pourrait renforcer le détail de ces modèles. Nous groupons ici de petites régions de l'Australie pour créer le premier modèle CGE régional du bas en haut qui distingue toutes les circonscriptions électorales fédérales à siège unique. Agregando detalle regional a un modelo CGE mediante datos de censo Extracto El número de regiones y sectores en la mayoría de los modelos CGE regionales es pequeño, debido a limitaciones de datos e informáticas. Los usos de dichos modelos se ampliarán si cuentan con bases de datos CGE mayores. El modelo TERM combina una base de datos masiva con una facilidad y técnicas de agregación variable para economizar en capacidad informática. Este estudio se extiende aún más perfilando el uso de datos de censo de regiones pequeñas para crear una base de datos CGE con un número de regiones sin precedentes. La metodología TERM original ya se ha empleado para crear modelos de regiones múltiples aplicables a varios países. Los datos de censo podrían mejorar el detalle en dichos modelos. Aquí, agrupamos regiones pequeñas de Australia para desarrollar el primer modelo CGE regional ascendente que distingue los 150 distritos electorales federales de un solo escaño.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Spatial Economic Analysis.

Volume (Year): 5 (2010)
Issue (Month): 2 ()
Pages: 229-255

in new window

Handle: RePEc:taf:specan:v:5:y:2010:i:2:p:229-255
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:5:y:2010:i:2:p:229-255. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.