IDEAS home Printed from https://ideas.repec.org/a/spr/italej/v9y2023i3d10.1007_s40797-022-00200-8.html
   My bibliography  Save this article

Can Machines Learn Creativity Needs? An Approach Based on Matrix Completion

Author

Listed:
  • Giorgio Gnecco

    (IMT-School for Advanced Studies)

  • Sara Landi

    (IMT-School for Advanced Studies)

  • Massimo Riccaboni

    (IMT-School for Advanced Studies)

Abstract

Technological progress has been recently associated with a crowding-out of cognitive-skill intensive jobs in favour of jobs requiring soft skills, such as ones related to social intelligence, flexibility and creativity. The nature of soft skills makes them hardly replaceable by machine work and among subsets of soft skills, creativity is one of the hardest to define and codify. Therefore, creativity-intensive occupations have been shielded from automation. Given this framework, our study contributes to a nascent field on interdisciplinary research to predict the impact of artificial intelligence on work activities and future jobs using machine learning. In our work, we focus on creativity, starting from its possible definitions, then we get significant insights on creativity patterns and dynamics in the Italian labour market, using a machine learning approach. We make use of the INAPP-ISTAT Survey on Occupations (ICP), where we identify 25 skills associated with creativity. Then, we apply matrix completion—a machine learning technique which is often used by recommender systems—to predict the average importance levels of various creative skills for each profession, showing its excellent prediction capability for the specific problem. We also find that matrix completion typically underestimates the average importance levels of soft skills associated with creativity, especially in the case of professions belonging to the major group of legislators, senior officials and managers, as well as intellectual professionals. Conversely, overestimates are typically obtained for other professions, which may be associated with a higher risk of being automated.

Suggested Citation

  • Giorgio Gnecco & Sara Landi & Massimo Riccaboni, 2023. "Can Machines Learn Creativity Needs? An Approach Based on Matrix Completion," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(3), pages 1111-1151, November.
  • Handle: RePEc:spr:italej:v:9:y:2023:i:3:d:10.1007_s40797-022-00200-8
    DOI: 10.1007/s40797-022-00200-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40797-022-00200-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40797-022-00200-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teresa Barbieri & Gaetano Basso & Sergio Scicchitano, 2022. "Italian Workers at Risk During the COVID-19 Epidemic," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 8(1), pages 175-195, March.
    2. Paul Beaudry & David A. Green & Benjamin M. Sand, 2016. "The Great Reversal in the Demand for Skill and Cognitive Tasks," Journal of Labor Economics, University of Chicago Press, vol. 34(S1), pages 199-247.
    3. Gonzalo Castex & Evgenia Kogan Dechter, 2014. "The Changing Roles of Education and Ability in Wage Determination," Journal of Labor Economics, University of Chicago Press, vol. 32(4), pages 685-710.
    4. M. Laura Frigotto & Massimo Riccaboni, 2011. "A few special cases: scientific creativity and network dynamics in the field of rare diseases," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 397-420, October.
    5. Rune Dahl Fitjar & Bram Timmermans, 2017. "Regional skill relatedness: towards a new measure of regional related diversification," European Planning Studies, Taylor & Francis Journals, vol. 25(3), pages 516-538, March.
    6. Armanda Cetrulo & Dario Guarascio & Maria Enrica Virgillito, 2020. "Anatomy of the Italian occupational structure: concentrated power and distributed knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(6), pages 1345-1379.
    7. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    8. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    9. Jefferson Ricardo Bretas Galetti & Milene Simone Tessarin & Paulo Cesar Morceiro, 2021. "Skill relatedness, structural change and heterogeneous regions: evidence from a developing country," Papers in Regional Science, Wiley Blackwell, vol. 100(6), pages 1355-1376, December.
    10. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    11. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    12. Mr. Davide Malacrino & Luigi Pistaferri, 2021. "Labor Market Reforms and Earnings Dynamics: the Italian Case," IMF Working Papers 2021/142, International Monetary Fund.
    13. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    14. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    15. Esposito, Piero & Scicchitano, Sergio, 2022. "Educational mismatch and labour market transitions in Italy: Is there an unemployment trap?," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 138-155.
    16. Bachmann, Ronald & Gonschor, Myrielle & Lewandowski, Piotr & Madoń, Karol, 2024. "The impact of Robots on Labour market transitions in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 422-441.
    17. Guarascio, Dario & Gualtieri, Valentina & Quaranta, Roberto, 2018. "Does routinization affect occupation dynamics? Evidence from the ‘Italian O*Net’ data," MPRA Paper 89585, University Library of Munich, Germany.
    18. Gaetano Basso & Tito Boeri & Alessandro Caiumi & Marco Paccagnella, 2022. "Unsafe jobs, labour market risk and social protection," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 37(110), pages 229-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liana Badea & George-Laurentiu Serban-Oprescu & Silvia-Elena Iacob & Suman Mishra & Mihaela-Roberta Stanef, 2024. "Artificial Intelligence and the Future of Work A Sustainable Development Perspective," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(Special 1), pages 1031-1031, November.
    2. Raluca-Florentina Cretu & Daniela Tutui & Viorel-Costin Banta & Elena Claudia Serban & Laura - Eugenia - Lavinia Barna & Romeo-Catalin Cretu, 2024. "Effects of Artificial Intelligence-Based Technologies Implementation s on the Skills Needed in the Automotive Industry A Bibliometric Analysis," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 801-801, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Cassandro & Marco Centra & Dario Guarascio & Piero Esposito, 2021. "What drives employment–unemployment transitions? Evidence from Italian task-based data," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 1109-1147, October.
    2. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    3. Leibrecht, Markus & Scharler, Johann & Zhoufu, Yan, 2023. "Automation and unemployment: Does collective bargaining moderate their association?," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 264-276.
    4. Silvia Vannutelli & Sergio Scicchitano & Marco Biagetti, 2022. "Routine-biased technological change and wage inequality: do workers’ perceptions matter?," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 409-450, September.
    5. Armanda Cetrulo & Dario Guarascio & Maria Enrica Virgillito, 2020. "Anatomy of the Italian occupational structure: concentrated power and distributed knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(6), pages 1345-1379.
    6. Consoli, Davide & Marin, Giovanni & Rentocchini, Francesco & Vona, Francesco, 2023. "Routinization, within-occupation task changes and long-run employment dynamics," Research Policy, Elsevier, vol. 52(1).
    7. Joshua Goodman, 2019. "The Labor of Division: Returns to Compulsory High School Math Coursework," Journal of Labor Economics, University of Chicago Press, vol. 37(4), pages 1141-1182.
    8. Brad Hershbein & Lisa B. Kahn, 2018. "Do Recessions Accelerate Routine-Biased Technological Change? Evidence from Vacancy Postings," American Economic Review, American Economic Association, vol. 108(7), pages 1737-1772, July.
    9. Stephany, Fabian & Teutloff, Ole, 2024. "What is the price of a skill? The value of complementarity," Research Policy, Elsevier, vol. 53(1).
    10. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    11. Robert Plant & Manuel S. Santos & Tarek Sayed, 2017. "Computerization, Composition of Employment, and Structure of Wages," Working Papers 2017-09, University of Miami, Department of Economics.
    12. Georg Graetz, 2019. "Labor Demand in the Past, Present, and Future," European Economy - Discussion Papers 114, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    14. Gunther Tichy, 2016. "Geht der Arbeitsgesellschaft die Arbeit aus?," WIFO Monatsberichte (monthly reports), WIFO, vol. 89(12), pages 853-871, December.
    15. Thor Berger & Carl Benedikt Frey, 2016. "Structural Transformation in the OECD: Digitalisation, Deindustrialisation and the Future of Work," OECD Social, Employment and Migration Working Papers 193, OECD Publishing.
    16. Thomsen, Stephan L, 2018. "Die Rolle der Computerisierung und Digitalisierung für Beschäftigung und Einkommen," Hannover Economic Papers (HEP) dp-645, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Guendalina Anzolin, 2021. "Automation and its Employment Effects: A Literature Review of Automotive and Garment Sectors," JRC Working Papers on Labour, Education and Technology 2021-16, Joint Research Centre.
    18. Lyu, Wenjing & Liu, Jin, 2021. "Soft skills, hard skills: What matters most? Evidence from job postings," Applied Energy, Elsevier, vol. 300(C).
    19. Dawei (David) Zhang & Gang Peng & Yuliang Yao & Tyson R. Browning, 2024. "Is a College Education Still Enough? The IT-Labor Relationship with Education Level, Task Routineness, and Artificial Intelligence," Information Systems Research, INFORMS, vol. 35(3), pages 992-1010, September.
    20. Robert Stehrer, 2022. "The Impact of ICT and Intangible Capital Accumulation on Labour Demand Growth and Functional Income Shares," wiiw Working Papers 218, The Vienna Institute for International Economic Studies, wiiw.

    More about this item

    Keywords

    Creativity and soft skills; Counterfactual analysis; Matrix completion; Labor market; Automation;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J44 - Labor and Demographic Economics - - Particular Labor Markets - - - Professional Labor Markets and Occupations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:italej:v:9:y:2023:i:3:d:10.1007_s40797-022-00200-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.