IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v49y2015i3p1123-1141.html
   My bibliography  Save this article

Bayesian procedures as a numerical tool for the estimation of an intertemporal discrete choice model

Author

Listed:
  • Peter Haan

    ()

  • Daniel Kemptner

    ()

  • Arne Uhlendorff

    ()

Abstract

Discrete choice models usually require a general specification of unobserved heterogeneity. In this paper, we apply Bayesian procedures as a numerical tool for the estimation of a female labor supply model based on a sample size that is typical for common household panels. We provide two important results for the practitioner: First, for a specification with a multivariate normal distribution for the unobserved heterogeneity, the Bayesian MCMC estimator yields almost identical results as a classical maximum simulated likelihood (MSL) estimator. Second, we show that when imposing distributional assumptions that are consistent with economic theory, e.g., log-normally distributed consumption preferences, the Bayesian method performs well and provides reasonable estimates, while the MSL estimator does not converge. These results indicate that Bayesian procedures can be a beneficial tool for the estimation of intertemporal discrete choice models. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Peter Haan & Daniel Kemptner & Arne Uhlendorff, 2015. "Bayesian procedures as a numerical tool for the estimation of an intertemporal discrete choice model," Empirical Economics, Springer, vol. 49(3), pages 1123-1141, November.
  • Handle: RePEc:spr:empeco:v:49:y:2015:i:3:p:1123-1141
    DOI: 10.1007/s00181-014-0906-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-014-0906-7
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
    3. Richard Blundell & Alan Duncan & Julian McCrae & Costas Meghir, 2000. "The labour market impact of the working families’ tax credit," Fiscal Studies, Institute for Fiscal Studies, vol. 21(1), pages 75-103, March.
    4. Regier, Dean A. & Ryan, Mandy & Phimister, Euan & Marra, Carlo A., 2009. "Bayesian and classical estimation of mixed logit: An application to genetic testing," Journal of Health Economics, Elsevier, vol. 28(3), pages 598-610, May.
    5. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
    6. Victoria Prowse, 2012. "Modeling Employment Dynamics With State Dependence and Unobserved Heterogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 411-431, April.
    7. Jean-Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445.
    8. Fitzenberger, Bernd & Osikominu, Aderonke & Paul, Marie, 2010. "The Heterogeneous Effects of Training Incidence and Duration on Labor Market Transitions," IZA Discussion Papers 5269, Institute for the Study of Labor (IZA).
    9. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    10. Steven Scott, 2011. "Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models," Statistical Papers, Springer, vol. 52(1), pages 87-109, February.
    11. Daniele Pacifico, 2013. "On the role of unobserved preference heterogeneity in discrete choice models of labour supply," Empirical Economics, Springer, vol. 45(2), pages 929-963, October.
    12. Viktor Steiner & Katharina Wrohlich & Peter Haan & Johannes Geyer, 2008. "Documentation of the Tax-Benefit Microsimulation Model STSM: Version 2008," Data Documentation 31, DIW Berlin, German Institute for Economic Research.
    13. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    14. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    15. Haan, Peter, 2010. "A Multi-state model of state dependence in labor supply: Intertemporal labor supply effects of a shift from joint to individual taxation," Labour Economics, Elsevier, vol. 17(2), pages 323-335, April.
    16. Aaberge, Rolf & Dagsvik, John K & Strom, Steinar, 1995. " Labor Supply Responses and Welfare Effects of Tax Reforms," Scandinavian Journal of Economics, Wiley Blackwell, vol. 97(4), pages 635-659, December.
    17. Chiappori, Pierre-Andre, 1988. "Rational Household Labor Supply," Econometrica, Econometric Society, vol. 56(1), pages 63-90, January.
    18. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    19. Yoshiko Matsumoto-Izadifar, 2009. "Mali: Beyond Cotton? Searching for "Green Gold"," OECD Journal: General Papers, OECD Publishing, vol. 2009(2), pages 33-51.
    20. -, 2009. "Humanities teaching in the modern school," Educational Studies, Higher School of Economics, issue 4, pages 19-34.
    21. Gert G. Wagner & Joachim R. Frick & Jürgen Schupp, 2007. "The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 127(1), pages 139-169.
    22. Akay, Alpaslan, 2009. "Dynamics of the Employment Assimilation of First-Generation Immigrant Men in Sweden: Comparing Dynamic and Static Assimilation Models with Longitudinal Data," IZA Discussion Papers 4655, Institute for the Study of Labor (IZA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyang Jia & Trine E. Vattø, 2016. "The path of labor supply adjustment. Sources of lagged responses to tax-benefit reforms," Discussion Papers 854, Statistics Norway, Research Department.

    More about this item

    Keywords

    Bayesian estimation; Discrete choice models; Intertemporal labor supply behavior; C11; C25; J22;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    Lists

    This item is featured on the following reading lists or Wikipedia pages:
    1. Bayesian procedures as a numerical tool for the estimation of an intertemporal discrete choice model (Emp Econ 2015) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:49:y:2015:i:3:p:1123-1141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.