IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v42y2019i3-4p307-334.html
   My bibliography  Save this article

Eco-efficiency Convergence and Green Urban Growth in China

Author

Listed:
  • Jianhuan Huang
  • Yue Hua

Abstract

Eco-efficiency measures if economic growth and environmental protection are effectively balanced. To understand the path of green urban growth in China, this article examines the converging patterns of eco-efficiency for 191 Chinese cities within 2003 and 2013. Two types of modified Data Envelopment Analysis (DEA) methods and spatial modeling approach are adopted in empirical analyses, with cities grouped based on three types of heterogeneities that facilitate the formation of potential convergence clubs. We find that major Chinese cities are β-converging in their eco-efficiency scores and are forming place-based convergence clubs in terms of geographical location, environmental policy, and resource endowments. Less efficient clubs are converging at a faster speed toward low-level steady states, while more efficient clubs are reaching separate high-level equilibria with relatively slow rates and longer half-life. We further raise corresponding policy implications that aim at retarding or reversing the ongoing trend of eco-efficiency deterioration.

Suggested Citation

  • Jianhuan Huang & Yue Hua, 2019. "Eco-efficiency Convergence and Green Urban Growth in China," International Regional Science Review, , vol. 42(3-4), pages 307-334, May.
  • Handle: RePEc:sae:inrsre:v:42:y:2019:i:3-4:p:307-334
    DOI: 10.1177/0160017618790032
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017618790032
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017618790032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daegoon Lee & Seong-Hoon Cho & Roland K. Roberts & Dayton M. Lambert, 2016. "Effects of Population Redistribution on Greenhouse Gas Emissions," International Regional Science Review, , vol. 39(2), pages 177-202, April.
    2. Kukenova, Madina & Monteiro, Jose-Antonio, 2008. "Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation," MPRA Paper 11569, University Library of Munich, Germany, revised Nov 2008.
    3. Camarero, Mariam & Picazo-Tadeo, Andrés J. & Tamarit, Cecilio, 2013. "Are the determinants of CO2 emissions converging among OECD countries?," Economics Letters, Elsevier, vol. 118(1), pages 159-162.
    4. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2010. "Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?," Energy Economics, Elsevier, vol. 32(6), pages 1364-1373, November.
    5. Zhang, Xin & Zhang, Xiaobo & Chen, Xi, 2017. "Valuing Air Quality Using Happiness Data: The Case of China," Ecological Economics, Elsevier, vol. 137(C), pages 29-36.
    6. Quah, Danny, 1997. "Empirics for growth and distribution," LSE Research Online Documents on Economics 2138, London School of Economics and Political Science, LSE Library.
    7. Galor, Oded, 1992. "A Two-Sector Overlapping-Generations Model: A Global Characterization of the Dynamical System," Econometrica, Econometric Society, vol. 60(6), pages 1351-1386, November.
    8. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    9. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    10. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    11. James P. LeSage, 2014. "What Regional Scientists Need to Know about Spatial Econometrics," The Review of Regional Studies, Southern Regional Science Association, vol. 44(1), pages 13-32, Spring.
    12. Jacobs, J.P.A.M. & Ligthart, J.E. & Vrijburg, H., 2009. "Dynamic Panel Data Models Featuring Endogenous Interaction and Spatially Correlated Errors," Other publications TiSEM d473cc67-03f6-4389-9a9f-3, Tilburg University, School of Economics and Management.
    13. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    14. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    15. Fredriksson, Per G. & Millimet, Daniel L., 2002. "Strategic Interaction and the Determination of Environmental Policy across U.S. States," Journal of Urban Economics, Elsevier, vol. 51(1), pages 101-122, January.
    16. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    17. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    18. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    19. Danny Quah, 1997. "Empirics for Growth and Distribution," CEP Discussion Papers dp0324, Centre for Economic Performance, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rizzati, Massimiliano & De Cian, Enrica & Guastella, Gianni & Mistry, Malcolm N. & Pareglio, Stefano, 2022. "Residential electricity demand projections for Italy: A spatial downscaling approach," Energy Policy, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    2. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    3. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
    4. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    5. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    6. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    7. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Mariam Camarero & Inmaculada Martínez-Zarzoso, 2017. "Stochastic and club convergence of sectoral CO2 emissions in the European Union," Working Papers 2017/01, Economics Department, Universitat Jaume I, Castellón (Spain).
    8. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    9. Salvati, Luca & Zitti, Marco, 2008. "Regional convergence of environmental variables: Empirical evidences from land degradation," Ecological Economics, Elsevier, vol. 68(1-2), pages 162-168, December.
    10. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    11. Ordás Criado, C. & Grether, J.-M., 2011. "Convergence in per capita CO2 emissions: A robust distributional approach," Resource and Energy Economics, Elsevier, vol. 33(3), pages 637-665, September.
    12. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    13. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    14. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    15. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    16. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    17. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    18. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    19. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    20. Guilherme De Oliveira & Deise Bourscheidt, 2016. "Convergência Multissetorial Na Emissão De Gases Do Efeito Estufa," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 182, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:42:y:2019:i:3-4:p:307-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.