IDEAS home Printed from https://ideas.repec.org/a/rre/publsh/v44y2014i1p13-33.html
   My bibliography  Save this article

What Regional Scientists Need to Know about Spatial Econometrics

Author

Listed:
  • James P. LeSage

    (Texas State University)

Abstract

Regional scientists frequently work with regression relationships involving sample data that is spatial in nature. For example, hedonic house-price regressions relate selling prices of houses located at points in space to characteristics of the homes as well as neighborhood characteristics. Migration, commodity, and transportation flow models relate the size of flows between origin and destination regions to the distance between origin and destination as well as characteristics of both origin and destination regions. Regional growth regressions relate growth rates of a region to past period own- and nearby-region resource inputs used in production. Spatial data typically violates the assumption that each observation is independent of other observations made by ordinary regression methods. This has econometric implications for the quality of estimates and inferences drawn from nonspatial regression models. Alternative methods for producing point estimates and drawing inferences for relationships involving spatial data samples comprise the broad topic covered by spatial econometrics. Like any subdiscipline, spatial econometrics has its quirks, many of which reflect influential past literature that has gained attention in both theoretical and applied work. This article asks the question: “What should regional scientists who wish to use regression relationships involving spatial data in an effort to shed light on questions of interest in regional science know about spatial econometric methods?”

Suggested Citation

  • James P. LeSage, 2014. "What Regional Scientists Need to Know about Spatial Econometrics," The Review of Regional Studies, Southern Regional Science Association, vol. 44(1), pages 13-32, Spring.
  • Handle: RePEc:rre:publsh:v44:y:2014:i:1:p:13-33
    as

    Download full text from publisher

    File URL: http://journal.srsa.org/ojs/index.php/RRS/article/view/44.1.2/pdf/
    File Function: To View On Journal Page
    Download Restriction: no

    File URL: http://journal.srsa.org/ojs/index.php/RRS/article/download/44.1.2/pdf/
    File Function: To Download Article
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Xiaoyi & Lee, Lung-fei, 2013. "Bayesian estimation and model selection for spatial Durbin error model with finite distributed lags," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 816-837.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    3. Harry H. Kelejian & Purba Mukerji, 2011. "Important dynamic indices in spatial models," Papers in Regional Science, Wiley Blackwell, vol. 90(4), pages 693-702, November.
    4. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    5. R. Pace & Shuang Zhu, 2012. "Separable spatial modeling of spillovers and disturbances," Journal of Geographical Systems, Springer, vol. 14(1), pages 75-90, January.
    6. James P. Lesage & Christina L. Ha, 2012. "The Impact of Migration on Social Capital: Do Migrants Take Their Bowling Balls with Them?," Growth and Change, Wiley Blackwell, vol. 43(1), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    2. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    3. Filippini, Massimo & Heimsch, Fabian, 2016. "The regional impact of a CO2 tax on gasoline demand: A spatial econometric approach," Resource and Energy Economics, Elsevier, vol. 46(C), pages 85-100.
    4. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    5. Shuang Zhu & R. Pace, 2014. "Modeling Spatially Interdependent Mortgage Decisions," The Journal of Real Estate Finance and Economics, Springer, vol. 49(4), pages 598-620, November.
    6. Geloso, Vincent & Kufenko, Vadim, 2019. "Can markets foster rebellion? The case of the 1837–38 rebellions in Lower Canada," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 263-287.
    7. Rodolfo Metulini & Paolo Sgrignoli & Stefano Schiavo & Massimo Riccaboni, 2018. "The network of migrants and international trade," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 763-787, December.
    8. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    9. Paul Elhorst & Solmaria Halleck Vega, 2013. "On spatial econometric models, spillover effects, and W," ERSA conference papers ersa13p222, European Regional Science Association.
    10. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    11. Isabel Proença & Ludgero Glórias, 2021. "Revisiting the Spatial Autoregressive Exponential Model for Counts and Other Nonnegative Variables, with Application to the Knowledge Production Function," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    12. Panagiotis Artelaris & George Petrakos, 2016. "Intraregional Spatial Inequalities and Regional Income Level in the European Union," International Regional Science Review, , vol. 39(3), pages 291-317, July.
    13. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    14. James P. LESAGE, 2014. "Software For Bayesian Spatial Model Comparison," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 40, pages 11-24.
    15. Harry Kelejian, 2014. "Omitted factors and spatial lags in the dependent variable," Letters in Spatial and Resource Sciences, Springer, vol. 7(1), pages 23-33, March.
    16. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    17. Germán M. Izón & Michael S. Hand & Daniel W. Mccollum & Jennifer A. Thacher & Robert P. Berrens, 2016. "Proximity to Natural Amenities: A Seemingly Unrelated Hedonic Regression Model with Spatial Durbin and Spatial Error Processes," Growth and Change, Wiley Blackwell, vol. 47(4), pages 461-480, December.
    18. Harry Kelejian & Gianfranco Piras, 2020. "Spillover effects in spatial models: Generalizations and extensions," Journal of Regional Science, Wiley Blackwell, vol. 60(3), pages 425-442, June.
    19. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    20. repec:rri:wpaper:201303 is not listed on IDEAS
    21. Emanuela Marrocu & Raffaele Paci & Stefano Usai, 2013. "Productivity Growth In The Old And New Europe: The Role Of Agglomeration Externalities," Journal of Regional Science, Wiley Blackwell, vol. 53(3), pages 418-442, August.

    More about this item

    Keywords

    spatial regression models; local versus global spatial spillovers; spatial Durbin and spatial Durbin error model specifications; spatial weight matrices; model comparison;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rre:publsh:v44:y:2014:i:1:p:13-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tammy Leonard & Lei Zhang (email available below). General contact details of provider: http://www.srsa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.