IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.02542.html
   My bibliography  Save this paper

Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances

Author

Listed:
  • Leopoldo Catania
  • Anna Gloria Bill'e

Abstract

We propose a new class of models specifically tailored for spatio-temporal data analysis. To this end, we generalize the spatial autoregressive model with autoregressive and heteroskedastic disturbances, i.e. SARAR(1,1), by exploiting the recent advancements in Score Driven (SD) models typically used in time series econometrics. In particular, we allow for time-varying spatial autoregressive coefficients as well as time-varying regressor coefficients and cross-sectional standard deviations. We report an extensive Monte Carlo simulation study in order to investigate the finite sample properties of the Maximum Likelihood estimator for the new class of models as well as its flexibility in explaining several dynamic spatial dependence processes. The new proposed class of models are found to be economically preferred by rational investors through an application in portfolio optimization.

Suggested Citation

  • Leopoldo Catania & Anna Gloria Bill'e, 2016. "Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," Papers 1602.02542, arXiv.org, revised Nov 2016.
  • Handle: RePEc:arx:papers:1602.02542
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.02542
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timmermann, Allan, 2008. "Reply to the discussion of Elusive Return Predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 29-30.
    2. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    5. Viviana Fernandez, 2011. "Spatial linkages in international financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 237-245.
    6. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    7. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    8. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    9. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, Open Access Journal, vol. 2(4), pages 1-33, December.
    10. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    11. Giuseppe Arbia & Bernard Fingleton, 2008. "New spatial econometric techniques and applications in regional science," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 311-317, August.
    12. Matthias Arnold & Sebastian Stahlberg & Dominik Wied, 2013. "Modeling different kinds of spatial dependence in stock returns," Empirical Economics, Springer, vol. 44(2), pages 761-774, April.
    13. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    14. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    15. Bao, Yong & Ullah, Aman, 2007. "Finite sample properties of maximum likelihood estimator in spatial models," Journal of Econometrics, Elsevier, vol. 137(2), pages 396-413, April.
    16. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    17. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496, October.
    18. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    19. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    20. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    21. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    22. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    23. Luc Anselin, 2003. "Spatial Externalities, Spatial Multipliers, And Spatial Econometrics," International Regional Science Review, , vol. 26(2), pages 153-166, April.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    26. Keiler, Sebastian & Eder, Armin, 2013. "CDS spreads and systemic risk: A spatial econometric approach," Discussion Papers 01/2013, Deutsche Bundesbank.
    27. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    28. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
    29. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    30. J. Elhorst, 2012. "Dynamic spatial panels: models, methods, and inferences," Journal of Geographical Systems, Springer, vol. 14(1), pages 5-28, January.
    31. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Nan‐Jung Hsu & Ya‐Mei Chang & Hsin‐Cheng Huang, 2012. "A group lasso approach for non‐stationary spatial–temporal covariance estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 12-23, February.
    32. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    33. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    34. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    35. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Foglia & Eliana Angelini, 2019. "The Time-Spatial Dimension of Eurozone Banking Systemic Risk," Risks, MDPI, Open Access Journal, vol. 7(3), pages 1-1, July.
    2. David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Generalized Autoregressive Score Models in R: The GAS Package," Papers 1609.02354, arXiv.org.
    3. Alice Barreca & Rocco Curto & Diana Rolando, 2020. "Urban Vibrancy: An Emerging Factor that Spatially Influences the Real Estate Market," Sustainability, MDPI, Open Access Journal, vol. 12(1), pages 1-1, January.
    4. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    5. Anna Gloria Billé & Samantha Leorato, 2017. "Quasi-ML estimation, Marginal Effects and Asymptotics for Spatial Autoregressive Nonlinear Models," BEMPS - Bozen Economics & Management Paper Series BEMPS44, Faculty of Economics and Management at the Free University of Bozen.
    6. Xu, Yuhong & Yang, Zhenlin, 2020. "Specification Tests for Temporal Heterogeneity in Spatial Panel Data Models with Fixed Effects," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    7. Guo, Juncong & Qu, Xi, 2020. "Fixed effects spatial panel data models with time-varying spatial dependence," Economics Letters, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    2. Gong, Pu & Weng, Yingliang, 2016. "Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 173-191.
    3. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    4. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    5. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.
    6. Marbuah, George & Amuakwa-Mensah, Franklin, 2017. "Spatial analysis of emissions in Sweden," Energy Economics, Elsevier, vol. 68(C), pages 383-394.
    7. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    8. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    9. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    10. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    11. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, Open Access Journal, vol. 3(2), pages 1-36, May.
    12. Hüttner, Amelie & Scherer, Matthias & Gräler, Benedikt, 2020. "Geostatistical modeling of dependent credit spreads: Estimation of large covariance matrices and imputation of missing data," Journal of Banking & Finance, Elsevier, vol. 118(C).
    13. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    14. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    15. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
    16. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    17. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    18. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    19. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    20. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.02542. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.