IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v195y2016i2p211-223.html
   My bibliography  Save this article

Spillover dynamics for systemic risk measurement using spatial financial time series models

Author

Listed:
  • Blasques, Francisco
  • Koopman, Siem Jan
  • Lucas, Andre
  • Schaumburg, Julia

Abstract

We extend the well-known static spatial Durbin model by introducing a time-varying spatial dependence parameter. The updating steps for this model are functions of past data and have information theoretic optimality properties. The static parameters are conveniently estimated by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimators of the static parameters are consistent and asymptotically normal. Using spatial weights based on cross-border lending data and European sovereign CDS spread data over the period 2009–2014, we find evidence of contagion in terms of high, time-varying spatial spillovers in the perceived credit riskiness of European sovereigns during the sovereign debt crisis. We find a particular downturn in spatial dependence in the second half of 2012 after the outright monetary transactions policy measures taken by the European Central Bank. Earlier non-standard monetary operations by the ECB did not induce such changes. The findings are robust to a wide range of alternative model specifications.

Suggested Citation

  • Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
  • Handle: RePEc:eee:econom:v:195:y:2016:i:2:p:211-223
    DOI: 10.1016/j.jeconom.2016.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616301609
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caporin, Massimiliano & Pelizzon, Loriana & Ravazzolo, Francesco & Rigobon, Roberto, 2018. "Measuring sovereign contagion in Europe," Journal of Financial Stability, Elsevier, vol. 34(C), pages 150-181.
    2. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    3. Bertrand Candelon & Amadou N Sy & Rabah Arezki, 2011. "Sovereign Rating News and Financial Markets Spillovers; Evidence from the European Debt Crisis," IMF Working Papers 11/68, International Monetary Fund.
    4. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    5. Beetsma, Roel & de Jong, Frank & Giuliodori, Massimo & Widijanto, Daniel, 2012. "Spread the News: How the Crisis Affected the Impact of News on the European Sovereign Bond Markets," CEPR Discussion Papers 9043, C.E.P.R. Discussion Papers.
    6. Stephan Dieckmann & Thomas Plank, 2012. "Default Risk of Advanced Economies: An Empirical Analysis of Credit Default Swaps during the Financial Crisis," Review of Finance, European Finance Association, vol. 16(4), pages 903-934.
    7. Pesaran, M. Hashem & Pick, Andreas, 2007. "Econometric issues in the analysis of contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1245-1277, April.
    8. Kalbaska, A. & Gątkowski, M., 2012. "Eurozone sovereign contagion: Evidence from the CDS market (2005–2010)," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 657-673.
    9. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    10. Viviana Fernandez, 2011. "Spatial linkages in international financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 237-245.
    11. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    12. De Santis, Roberto A., 2012. "The Euro area sovereign debt crisis: safe haven, credit rating agencies and the spread of the fever from Greece, Ireland and Portugal," Working Paper Series 1419, European Central Bank.
    13. Dong Hwan Oh & Andrew J. Patton, 2013. "Time-Varying Systemic Risk: Evidence from a Dynamic Copula Model of CDS Spreads," Working Papers 13-30, Duke University, Department of Economics.
    14. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    15. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    16. Matthias Arnold & Sebastian Stahlberg & Dominik Wied, 2013. "Modeling different kinds of spatial dependence in stock returns," Empirical Economics, Springer, vol. 44(2), pages 761-774, April.
    17. Dominik Wied, 2013. "CUSUM-type testing for changing parameters in a spatial autoregressive model for stock returns," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 221-229, March.
    18. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, March.
    20. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    21. Acharya, Viral V. & Steffen, Sascha, 2015. "The “greatest” carry trade ever? Understanding eurozone bank risks," Journal of Financial Economics, Elsevier, vol. 115(2), pages 215-236.
    22. Tonzer, Lena, 2015. "Cross-border interbank networks, banking risk and contagion," Journal of Financial Stability, Elsevier, vol. 18(C), pages 19-32.
    23. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, March.
    24. Kallestrup, René & Lando, David & Murgoci, Agatha, 2016. "Financial sector linkages and the dynamics of bank and sovereign credit spreads," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 374-393.
    25. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    26. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
    27. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    28. Saldías, Martín, 2013. "A market-based approach to sector risk determinants and transmission in the euro area," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4534-4555.
    29. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
    30. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    31. Christian Leschinski, Christian & Bertram, Philip, 2013. "Contagion Dynamics in EMU Government Bond Spreads," Hannover Economic Papers (HEP) dp-515, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    32. Viral Acharya & Itamar Drechsler & Philipp Schnabl, 2014. "A Pyrrhic Victory? Bank Bailouts and Sovereign Credit Risk," Journal of Finance, American Finance Association, vol. 69(6), pages 2689-2739, December.
    33. André Lucas & Bernd Schwaab & Xin Zhang, 2014. "Conditional Euro Area Sovereign Default Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 271-284, April.
    34. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    35. Ang, Andrew & Longstaff, Francis A., 2013. "Systemic sovereign credit risk: Lessons from the U.S. and Europe," Journal of Monetary Economics, Elsevier, vol. 60(5), pages 493-510.
    36. Armin Eder & Sebastian Keiler, 2015. "CDS Spreads and Contagion Amongst Systemically Important Financial Institutions – A Spatial Econometric Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(4), pages 291-309, October.
    37. Gorea, Denis & Radev, Deyan, 2014. "The euro area sovereign debt crisis: Can contagion spread from the periphery to the core?," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 78-100.
    38. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers CWP44/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    39. Edward Denbee & Christian Julliard & Ye Li & Kathy Yuan, 2014. "Network Risk and Key Players: A Structural Analysis of Interbank Liquidity," FMG Discussion Papers dp734, Financial Markets Group.
    40. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    41. James P. Lesage, 2008. "An Introduction to Spatial Econometrics," Revue d'économie industrielle, De Boeck Université, vol. 0(3), pages 19-44.
    42. Keiler, Sebastian & Eder, Armin, 2013. "CDS spreads and systemic risk: A spatial econometric approach," Discussion Papers 01/2013, Deutsche Bundesbank.
    43. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    2. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    3. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    4. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    5. repec:bpj:jossai:v:3:y:2015:i:5:p:463-471:n:7 is not listed on IDEAS
    6. Peter Schwendner & Martin Schuele & Thomas Ott & Martin Hillebrand, 2015. "European Government Bond Dynamics and Stability Policies: Taming Contagion Risks," Working Papers 8, European Stability Mechanism.
    7. Giovanni Angelini & Paolo Gorgi, 2018. "DSGE Models with Observation-Driven Time-Varying parameters," Tinbergen Institute Discussion Papers 18-030/III, Tinbergen Institute.
    8. Billio, Monica & Caporin, Massimiliano & Panzica, Roberto Calogero & Pelizzon, Loriana, 2017. "The impact of network connectivity on factor exposures, asset pricing and portfolio diversification," SAFE Working Paper Series 166, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    9. Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2018. "Missing Observations in Observation-Driven Time Series Models," Tinbergen Institute Discussion Papers 18-013/III, Tinbergen Institute.
    10. David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Generalized Autoregressive Score Models in R: The GAS Package," Papers 1609.02354, arXiv.org.
    11. Marco Valerio Geraci & Jean-Yves Gnabo, 2015. "Measuring interconnectedness between financial institutions with Bayesian time-varying vector autoregressions," Working Papers ECARES 2015-51, ULB -- Universite Libre de Bruxelles.
    12. Marco Valerio Geraci & Jean-Yves Gnabo, 2015. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying VARS," Working Papers ECARES ECARES 2015-51, ULB -- Universite Libre de Bruxelles.
    13. Bo Pieter Johannes Andree & Francisco Blasques & Eric Koomen, 2017. "Smooth Transition Spatial Autoregressive Models," Tinbergen Institute Discussion Papers 17-050/III, Tinbergen Institute.
    14. Rutger-Jan Lange & Andre Lucas & Arjen H. Siegmann, 2016. "Score-Driven Systemic Risk Signaling for European Sovereign Bond Yields and CDS Spreads," Tinbergen Institute Discussion Papers 16-064/IV, Tinbergen Institute.

    More about this item

    Keywords

    Spatial correlation; Time-varying parameters; Systemic risk; European debt crisis; Generalized autoregressive scores;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:195:y:2016:i:2:p:211-223. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.