IDEAS home Printed from
   My bibliography  Save this article

Bayesian estimation and model selection for spatial Durbin error model with finite distributed lags


  • Han, Xiaoyi
  • Lee, Lung-fei


In this paper we investigate a spatial Durbin error model with finite distributed lags and consider the Bayesian MCMC estimation of the model with a smoothness prior. We study also the corresponding Bayesian model selection procedure for the spatial Durbin error model, the spatial autoregressive model and the matrix exponential spatial specification model. We derive expressions of the marginal likelihood of the three models, which greatly simplify the model selection procedure. Simulation results suggest that the Bayesian estimates of high order spatial distributed lag coefficients are more precise than the maximum likelihood estimates. When the data is generated with a general declining pattern or a unimodal pattern for lag coefficients, the spatial Durbin error model can better capture the pattern than the SAR and the MESS models in most cases. We apply the procedure to study the effect of right to work (RTW) laws on manufacturing employment.

Suggested Citation

  • Han, Xiaoyi & Lee, Lung-fei, 2013. "Bayesian estimation and model selection for spatial Durbin error model with finite distributed lags," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 816-837.
  • Handle: RePEc:eee:regeco:v:43:y:2013:i:5:p:816-837 DOI: 10.1016/j.regsciurbeco.2013.04.006

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    2. L W Hepple, 1995. "Bayesian techniques in spatial and network econometrics: 2. Computational methods and algorithms," Environment and Planning A, Pion Ltd, London, vol. 27(4), pages 615-644, April.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    4. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    5. Olivier Parent & James Lesage, 2005. "Bayesian Model Averaging for Spatial Econometric Models," Post-Print hal-00375489, HAL.
    6. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds," Environment and Planning A, , vol. 27(3), pages 447-469, March.
    7. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    8. Holloway, Garth & Shankar, Bhavani & Rahman, Sanzidur, 2002. "Bayesian spatial probit estimation: a primer and an application to HYV rice adoption," Agricultural Economics, Blackwell, vol. 27(3), pages 383-402, November.
    9. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    10. L W Hepple, 1995. "Bayesian techniques in spatial and network econometrics: 1. Model comparison and posterior odds," Environment and Planning A, Pion Ltd, London, vol. 27(3), pages 447-469, March.
    11. Charlene M. Kalenkoski & Donald J. Lacombe, 2006. "Right-to-work Laws and Manufacturing Employment: The Importance of Spatial Dependence," Southern Economic Journal, Southern Economic Association, vol. 73(2), pages 402-418, October.
    12. Shiller, Robert J, 1973. "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, Econometric Society, vol. 41(4), pages 775-788, July.
    13. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    14. James P. Lesage & Christina L. Ha, 2012. "The Impact of Migration on Social Capital: Do Migrants Take Their Bowling Balls with Them?," Growth and Change, Wiley Blackwell, vol. 43(1), pages 1-26, March.
    15. J. Barkley Rosser, 2009. "Introduction," Chapters,in: Handbook of Research on Complexity, chapter 1 Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. James LeSage, 2015. "Software for Bayesian cross section and panel spatial model comparison," Journal of Geographical Systems, Springer, vol. 17(4), pages 297-310, October.
    2. Fischer, Manfred M. & Piribauer, Philipp, 2013. "Model uncertainty in matrix exponential spatial growth regression models," Department of Economics Working Paper Series 4013, WU Vienna University of Economics and Business.
    3. James P. LESAGE, 2014. "Software For Bayesian Spatial Model Comparison," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 40, pages 11-24.

    More about this item


    Spatial Durbin error model; Spatial autoregressive model; Matrix exponential spatial specification; Smoothness prior; Marginal likelihood; Bayesian estimation;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:regeco:v:43:y:2013:i:5:p:816-837. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.