IDEAS home Printed from https://ideas.repec.org/a/spr/jospat/v2y2021i1d10.1007_s43071-021-00016-1.html
   My bibliography  Save this article

Revisiting estimation methods for spatial econometric interaction models

Author

Listed:
  • Lukas Dargel

    (University of Toulouse Capitole
    BVA Group)

Abstract

This article develops improved calculation techniques for estimating the spatial econometric interaction model of LeSage and Pace (2008) by maximum likelihood (MLE), Bayesian Markov Chain Monte Carlo (MCMC) and spatial two-stage least-squares (S2SLS). The refined estimation methods derive the parameter estimates and their standard errors exclusively from moment matrices with low dimensions. For the computation of these moments, we exploit efficiency gains linked to a matrix formulation of the model, which we generalize to make more flexible use of the exogenous variables. To improve the MLE we restructure the Hessian matrix and the quadratic term in the likelihood function. We also derive a moment based formulation of the Bayesian MCMC estimator from the same likelihood restructuring. Finally, the S2SLS estimator presented in this article is the first one to exploit the efficiency gains of the matrix formulation and also solves the problem of collinearity among spatial instruments. Several benchmarks show that these moment based estimators scale very well to large samples and can be used to estimate models with 100 million flows in just a few minutes. In addition to the improved estimation methods, this article presents a new way to define a feasible parameter space for the spatial econometric interaction model, which allows to verify the models consistency with a minimal computational burden. All of these developments indicate that the spatial econometric extension of the traditional gravity model has become an increasingly mature alternative and should eventually be considered a standard modeling approach for origin-destination flows.

Suggested Citation

  • Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
  • Handle: RePEc:spr:jospat:v:2:y:2021:i:1:d:10.1007_s43071-021-00016-1
    DOI: 10.1007/s43071-021-00016-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43071-021-00016-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43071-021-00016-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerkman, Kasper & Martens, Karel & Meurs, Henk, 2017. "A multilevel spatial interaction model of transit flows incorporating spatial and network autocorrelation," Journal of Transport Geography, Elsevier, vol. 60(C), pages 155-166.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    4. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    5. Michel Goulard & Thibault Laurent & Christine Thomas-Agnan, 2017. "About predictions in spatial autoregressive models: optimal and almost optimal strategies," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 304-325, July.
    6. Manfred M. Fischer & James P. LeSage, 2020. "Network dependence in multi-indexed data on international trade flows," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-26, December.
    7. James P. Lesage, 1997. "Bayesian Estimation of Spatial Autoregressive Models," International Regional Science Review, , vol. 20(1-2), pages 113-129, April.
    8. Smirnov, Oleg A. & Anselin, Luc E., 2009. "An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2980-2988, June.
    9. Roberto Patuelli & Giuseppe Arbia (ed.), 2016. "Spatial Econometric Interaction Modelling," Advances in Spatial Science, Springer, number 978-3-319-30196-9, December.
    10. A. Porojan, 2001. "Trade Flows and Spatial Effects: The Gravity Model Revisited," Open Economies Review, Springer, vol. 12(3), pages 265-280, July.
    11. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, November.
    12. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms," Environment and Planning A, , vol. 27(4), pages 615-644, April.
    13. Pace, R. Kelley & LeSage, James P., 2004. "Chebyshev approximation of log-determinants of spatial weight matrices," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 179-196, March.
    14. James E. Anderson, 2011. "The Gravity Model," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 133-160, September.
    15. Holloway, Garth & Shankar, Bhavani & Rahman, Sanzidur, 2002. "Bayesian spatial probit estimation: a primer and an application to HYV rice adoption," Agricultural Economics, Blackwell, vol. 27(3), pages 383-402, November.
    16. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    17. Ming-Long Lee & R. Kelley Pace, 2005. "Spatial Distribution of Retail Sales," The Journal of Real Estate Finance and Economics, Springer, vol. 31(1), pages 53-69, August.
    18. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    19. James Paul LeSage, 2020. "Fast MCMC estimation of multiple W-matrix spatial regression models and Metropolis–Hastings Monte Carlo log-marginal likelihoods," Journal of Geographical Systems, Springer, vol. 22(1), pages 47-75, January.
    20. Kazuki Tamesue & Morito Tsutsumi, 2016. "Dealing with Intraregional Flows in Spatial Econometric Gravity Models," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 105-119, Springer.
    21. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    22. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    23. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    24. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    25. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    26. Harry H. Kelejian & Dennis P. Robinson, 1995. "Spatial Correlation: A Suggested Alternative to the Autoregressive Model," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 3, pages 75-95, Springer.
    27. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    28. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dargel, Lukas & Thomas-Agnan, Christine, 2022. "A generalized framework for estimating spatial econometric interaction models," TSE Working Papers 22-1312, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dargel, Lukas, 2021. "Revisiting Estimation Methods for Spatial Econometric Interaction Models," TSE Working Papers 21-1192, Toulouse School of Economics (TSE).
    2. repec:asg:wpaper:1013 is not listed on IDEAS
    3. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    4. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    5. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    6. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    7. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    8. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    9. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    10. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    11. Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
    12. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    13. Simon K. C. Cheung & Tommy K. Y. Cheung, 2022. "Mixed membership nearest neighbor model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1578-1594, December.
    14. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    15. Rodolfo Metulini & Paolo Sgrignoli & Stefano Schiavo & Massimo Riccaboni, 2018. "The network of migrants and international trade," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 763-787, December.
    16. James Paul LeSage & Manfred M. Fischer, 2020. "Cross-sectional dependence model specifications in a static trade panel data setting," Journal of Geographical Systems, Springer, vol. 22(1), pages 5-46, January.
    17. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    18. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    19. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    20. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    21. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.

    More about this item

    Keywords

    Origin-destination flows; Cross-sectional dependence; Maximum likelihood; Two-stage least-squares; Bayesian Markov chain Monte Carlo;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jospat:v:2:y:2021:i:1:d:10.1007_s43071-021-00016-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.