IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Beyond conjoint analysis: Advances in preference measurement

  • Oded Netzer

    ()

  • Olivier Toubia

    ()

  • Eric Bradlow

    ()

  • Ely Dahan

    ()

  • Theodoros Evgeniou

    ()

  • Fred Feinberg

    ()

  • Eleanor Feit

    ()

  • Sam Hui

    ()

  • Joseph Johnson

    ()

  • John Liechty

    ()

  • James Orlin

    ()

  • Vithala Rao

    ()

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s11002-008-9046-1
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Marketing Letters.

Volume (Year): 19 (2008)
Issue (Month): 3 (December)
Pages: 337-354

as
in new window

Handle: RePEc:kap:mktlet:v:19:y:2008:i:3:p:337-354
Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=100312

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tversky, Amos & Kahneman, Daniel, 1992. " Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
  2. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer, vol. 38(3), pages 337-369, September.
  3. Richard D. McBride & Fred S. Zufryden, 1988. "An Integer Programming Approach to the Optimal Product Line Selection Problem," Marketing Science, INFORMS, vol. 7(2), pages 126-140.
  4. Rao, Vithala R & Steckel, Joel H, 1991. " A Polarization Model for Describing Group Preferences," Journal of Consumer Research, University of Chicago Press, vol. 18(1), pages 108-18, June.
  5. Amos Tversky & Daniel Kahneman, 1979. "Prospect Theory: An Analysis of Decision under Risk," Levine's Working Paper Archive 7656, David K. Levine.
  6. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
  7. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
  8. V. Srinivasan & Allan Shocker, 1973. "Estimating the weights for multiple attributes in a composite criterion using pairwise judgments," Psychometrika, Springer, vol. 38(4), pages 473-493, December.
  9. Gregory Dobson & Shlomo Kalish, 1993. "Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data," Management Science, INFORMS, vol. 39(2), pages 160-175, February.
  10. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
  11. Ernst Fehr & Lorenz Götte, 2005. "Do Workers Work More if Wages are High? Evidence from a Randomized Field Experiment," IEW - Working Papers 125, Institute for Empirical Research in Economics - University of Zurich.
  12. Toubia, Olivier & Hauser, John & Simester, Duncan, 2003. "Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis," Working papers 4285-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  13. Neeraj Arora & Xavier Dreze & Anindya Ghose & James Hess & Raghuram Iyengar & Bing Jing & Yogesh Joshi & V. Kumar & Nicholas Lurie & Scott Neslin & S. Sajeesh & Meng Su & Niladri Syam & Jacquelyn Thom, 2008. "Putting one-to-one marketing to work: Personalization, customization, and choice," Marketing Letters, Springer, vol. 19(3), pages 305-321, December.
  14. Wilfred Amaldoss & Teck-Hua Ho & Aradhna Krishna & Kay-Yut Chen & Preyas Desai & Ganesh Iyer & Sanjay Jain & Noah Lim & John Morgan & Ryan Oprea & Joydeep Srivasatava, 2008. "Experiments on strategic choices and markets," Marketing Letters, Springer, vol. 19(3), pages 417-429, December.
  15. Wiktor Adamowicz & David Bunch & Trudy Cameron & Benedict Dellaert & Michael Hanneman & Michael Keane & Jordan Louviere & Robert Meyer & Thomas Steenburgh & Joffre Swait, 2008. "Behavioral frontiers in choice modeling," Marketing Letters, Springer, vol. 19(3), pages 215-228, December.
  16. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
  17. Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
  18. John Liechty & Rik Pieters & Michel Wedel, 2003. "Global and local covert visual attention: Evidence from a bayesian hidden markov model," Psychometrika, Springer, vol. 68(4), pages 519-541, December.
  19. Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
  20. Kim, Jin Gyo & Menzefricke, Ulrich & Feinberg, Fred M., 2005. "Modeling Parametric Evolution in a Random Utility Framework," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 282-294, July.
  21. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
  22. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
  23. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-71, March.
  24. Tülin Erdem & Michael Keane & T. Öncü & Judi Strebel, 2005. "Learning About Computers: An Analysis of Information Search and Technology Choice," Quantitative Marketing and Economics, Springer, vol. 3(3), pages 207-247, September.
  25. Garrett Sonnier & Andrew Ainslie & Thomas Otter, 2007. "Heterogeneity distributions of willingness-to-pay in choice models," Quantitative Marketing and Economics, Springer, vol. 5(3), pages 313-331, September.
  26. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
  27. Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics, Springer, vol. 4(1), pages 57-81, March.
  28. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
  29. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
  30. Jin Gyo Kim & Ulrich Menzefricke & Fred M. Feinberg, 2007. "Capturing Flexible Heterogeneous Utility Curves: A Bayesian Spline Approach," Management Science, INFORMS, vol. 53(2), pages 340-354, February.
  31. Arnaud De Bruyn & John C. Liechty & Eelko K. R. E. Huizingh & Gary L. Lilien, 2008. "Offering Online Recommendations with Minimum Customer Input Through Conjoint-Based Decision Aids," Marketing Science, INFORMS, vol. 27(3), pages 443-460, 05-06.
  32. Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
  33. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
  34. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:19:y:2008:i:3:p:337-354. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.