IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v24y2005i4p595-615.html
   My bibliography  Save this article

Prediction in Marketing Using the Support Vector Machine

Author

Listed:
  • Dapeng Cui

    () (Ipsos Insight, North America, 111 North Canal, Suite 405, Chicago, Illinois 60606)

  • David Curry

    () (College of Business Administration, University of Cincinnati, Cincinnati, Ohio 45221-0145)

Abstract

Many marketing problems require accurately predicting the outcome of a process or the future state of a system. In this paper, we investigate the ability of the support vector machine to predict outcomes in emerging environments in marketing, such as automated modeling, mass-produced models, intelligent software agents, and data mining. The support vector machine (SVM) is a semiparametric technique with origins in the machine-learning literature of computer science. Its approach to prediction differs markedly from that of standard parametric models. We explore these differences and benchmark the SVM's prediction hit-rates against those from the multinomial logit model. Because there are few applications of the SVM in marketing, we develop a framework to position it against current modeling techniques and to assess its weaknesses as well as its strengths.

Suggested Citation

  • Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
  • Handle: RePEc:inm:ormksc:v:24:y:2005:i:4:p:595-615
    DOI: 10.1287/mksc.1050.0123
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1050.0123
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. John D. Schmitz & Gordon D. Armstrong & John D. C. Little, 1990. "CoverStory—Automated News Finding in Marketing," Interfaces, INFORMS, vol. 20(6), pages 29-38, December.
    3. Paul Resnick & Christopher Avery & Richard Zeckhauser, 1999. "The Market for Evaluations," American Economic Review, American Economic Association, vol. 89(3), pages 564-584, June.
    4. Lilien, Gary L. & Rangaswamy, Arvind & van Bruggen, Gerrit H. & Wierenga, Berend, 2002. "Bridging the marketing theory-practice gap with marketing engineering," Journal of Business Research, Elsevier, vol. 55(2), pages 111-121, February.
    5. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    6. Magid M. Abraham & Leonard M. Lodish, 1993. "An Implemented System for Improving Promotion Productivity Using Store Scanner Data," Marketing Science, INFORMS, vol. 12(3), pages 248-269.
    7. Magid M. Abraham & Leonard M. Lodish, 1987. "Promoter: An Automated Promotion Evaluation System," Marketing Science, INFORMS, vol. 6(2), pages 101-123.
    8. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    9. Berend Wierenga & Gerrit H. Van Bruggen & Richard Staelin, 1999. "The Success of Marketing Management Support Systems," Marketing Science, INFORMS, vol. 18(3), pages 196-207.
    10. Diehl, Kristin & Kornish, Laura J & Lynch, John G, Jr, 2003. "Smart Agents: When Lower Search Costs for Quality Information Increase Price Sensitivity," Journal of Consumer Research, Oxford University Press, vol. 30(1), pages 56-71, June.
    11. Lee G. Cooper & Giovanni Giuffrida, 2000. "Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results," Management Science, INFORMS, vol. 46(2), pages 249-264, February.
    12. Michael D. Smith & Erik Brynjolfsson, 2001. "Consumer Decision-making at an Internet Shopbot: Brand Still Matters," NBER Chapters, in: E-commerce, pages 541-558, National Bureau of Economic Research, Inc.
    13. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    14. Michael D. Smith & Erik Brynjolfsson, 2001. "Consumer Decision-making at an Internet Shopbot: Brand Still Matters," NBER Chapters, in: E-commerce, pages 541-558, National Bureau of Economic Research, Inc.
    15. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:24:y:2005:i:4:p:595-615. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.