IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v46y2000i2p249-264.html
   My bibliography  Save this article

Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results

Author

Listed:
  • Lee G. Cooper

    () (Anderson Graduate School of Management, 110 Westwood Plaza, Suite B518, University of California at Los Angeles, Los Angeles, California 90095-1481)

  • Giovanni Giuffrida

    () (Computer Science Department, University of California at Los Angeles, Los Angeles, California 90095)

Abstract

This article develops and illustrates a new knowledge discovery algorithm tailored to the action requirements of management science applications. The challenge is to develop tactical planning forecasts at the SKU level. We use a traditional market-response model to extract information from continuous variables and use datamining techniques on the residuals to extract information from the many-valued nominal variables, such as the manufacturer or merchandise category. This combination means that a more complete array of information can be used to develop tactical planning forecasts. The method is illustrated using records of the aggregate sales during promotion events conducted by a 95-store retail chain in a single trading area. In a longitudinal cross validation, the statistical forecast (PromoCast\trademark ) predicted the exact number of cases of merchandise needed in 49% of the promotion events and was within ± one case in 82% of the events. The dataminer developed rules from an independent sample of 1.6 million observations and applied these rules to almost 460,000 promotion events in the validation process. The dataminer had sufficient confidence to make recommendations on 46% of these forecasts. In 66% of those recommendations, the dataminer indicated that the forecast should not be changed. In 96% of those promotion events where "no change" was recommended, this was the correct "action" to take. Even including these "no change" recommendations, the dataminer decreased the case error by 9% across all promotion events in which rules applied.

Suggested Citation

  • Lee G. Cooper & Giovanni Giuffrida, 2000. "Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results," Management Science, INFORMS, vol. 46(2), pages 249-264, February.
  • Handle: RePEc:inm:ormnsc:v:46:y:2000:i:2:p:249-264
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.46.2.249.11932
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lee G. Cooper & Penny Baron & Wayne Levy & Michael Swisher & Paris Gogos, 1999. "PromoCast™: A New Forecasting Method for Promotion Planning," Marketing Science, INFORMS, vol. 18(3), pages 301-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    2. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
    3. repec:pal:jorsoc:v:57:y:2006:i:3:d:10.1057_palgrave.jors.2602006 is not listed on IDEAS
    4. Fang, Xiao & Rachamadugu, Ram, 2009. "Policies for knowledge refreshing in databases," Omega, Elsevier, vol. 37(1), pages 16-28, February.
    5. Lee G. Cooper & Penny Baron & Wayne Levy & Michael Swisher & Paris Gogos, 1999. "PromoCast™: A New Forecasting Method for Promotion Planning," Marketing Science, INFORMS, vol. 18(3), pages 301-316.
    6. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2014. "The value of competitive information in forecasting FMCG retail product sales and the variable selection problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 738-748.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:46:y:2000:i:2:p:249-264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.