Advanced conjoint analysis using feature selection via support vector machines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2014.09.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
- Timothy J. Gilbride & Greg M. Allenby, 2006. "Estimating Heterogeneous EBA and Economic Screening Rule Choice Models," Marketing Science, INFORMS, vol. 25(5), pages 494-509, September.
- Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
- Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
- Karniouchina, Ekaterina V. & Moore, William L. & van der Rhee, Bo & Verma, Rohit, 2009. "Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research," European Journal of Operational Research, Elsevier, vol. 197(1), pages 340-348, August.
- David Hensher & John Rose & William Greene, 2012. "Inferring attribute non-attendance from stated choice data: implications for willingness to pay estimates and a warning for stated choice experiment design," Transportation, Springer, vol. 39(2), pages 235-245, March.
- Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
- Hensher, David & Louviere, Jordan & Swait, Joffre, 1998. "Combining sources of preference data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 197-221, November.
- Paul E. Green & Abba M. Krieger & Yoram Wind, 2001. "Thirty Years of Conjoint Analysis: Reflections and Prospects," Interfaces, INFORMS, vol. 31(3_supplem), pages 56-73, June.
- Natter, Martin & Feurstein, Markus, 2002. "Real world performance of choice-based conjoint models," European Journal of Operational Research, Elsevier, vol. 137(2), pages 448-458, March.
- Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
- Halme, Merja & Kallio, Markku, 2014. "Likelihood estimation of consumer preferences in choice-based conjoint analysis," European Journal of Operational Research, Elsevier, vol. 239(2), pages 556-564.
- Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
- Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
- Scholl, Armin & Manthey, Laura & Helm, Roland & Steiner, Michael, 2005. "Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparison," European Journal of Operational Research, Elsevier, vol. 164(3), pages 760-777, August.
- Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.
- Gregory Dobson & Shlomo Kalish, 1993. "Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data," Management Science, INFORMS, vol. 39(2), pages 160-175, February.
- Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Julio López & Sebastián Maldonado & Ricardo Montoya, 2017. "Simultaneous preference estimation and heterogeneity control for choice-based conjoint via support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1323-1334, November.
- Vairetti, Carla & González-Ramírez, Rosa G. & Maldonado, Sebastián & Álvarez, Claudio & Voβ, Stefan, 2019. "Facilitating conditions for successful adoption of inter-organizational information systems in seaports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 333-350.
- Zhang, Yishi & Zhu, Ruilin & Chen, Zhijun & Gao, Jie & Xia, De, 2021. "Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data," European Journal of Operational Research, Elsevier, vol. 290(1), pages 235-247.
- Narine Yegoryan & Daniel Guhl & Friederike Paetz, 2023. "When Zeros Count: Confounding in Preference Heterogeneity and Attribute Non-attendance," Rationality and Competition Discussion Paper Series 482, CRC TRR 190 Rationality and Competition.
- Oztekin, Asil & Al-Ebbini, Lina & Sevkli, Zulal & Delen, Dursun, 2018. "A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology," European Journal of Operational Research, Elsevier, vol. 266(2), pages 639-651.
- Yegoryan, Narine & Guhl, Daniel & Klapper, Daniel, 2018. "Inferring Attribute Non-Attendance Using Eye Tracking in Choice-Based Conjoint Analysis," Rationality and Competition Discussion Paper Series 111, CRC TRR 190 Rationality and Competition.
- Yegoryan, Narine & Guhl, Daniel & Klapper, Daniel, 2020. "Inferring attribute non-attendance using eye tracking in choice-based conjoint analysis," Journal of Business Research, Elsevier, vol. 111(C), pages 290-304.
- Díaz, Verónica & Montoya, Ricardo & Maldonado, Sebastián, 2023. "Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach," European Journal of Operational Research, Elsevier, vol. 304(2), pages 797-812.
- Karlson Pfannschmidt & Pritha Gupta & Bjorn Haddenhorst & Eyke Hullermeier, 2019. "Learning Context-Dependent Choice Functions," Papers 1901.10860, arXiv.org, revised Oct 2021.
- Franke, Melanie & Nadler, Claudia, 2019. "Energy efficiency in the German residential housing market: Its influence on tenants and owners," Energy Policy, Elsevier, vol. 128(C), pages 879-890.
- Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
- Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
- Julio López & Sebastián Maldonado & Ricardo Montoya, 2017. "Simultaneous preference estimation and heterogeneity control for choice-based conjoint via support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1323-1334, November.
- Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
- Díaz, Verónica & Montoya, Ricardo & Maldonado, Sebastián, 2023. "Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach," European Journal of Operational Research, Elsevier, vol. 304(2), pages 797-812.
- Denis Sauré & Juan Pablo Vielma, 2019. "Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis," Operations Research, INFORMS, vol. 67(2), pages 315-338, March.
- James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
- Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
- Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
- Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
- Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.
- Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
- Schlereth, Christian & Eckert, Christine & Schaaf, René & Skiera, Bernd, 2014. "Measurement of preferences with self-explicated approaches: A classification and merge of trade-off- and non-trade-off-based evaluation types," European Journal of Operational Research, Elsevier, vol. 238(1), pages 185-198.
- Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
- Lee, Ungki & Kang, Namwoo & Lee, Ikjin, 2020. "Choice data generation using usage scenarios and discounted cash flow analysis," Journal of choice modelling, Elsevier, vol. 37(C).
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Halme, Merja & Kallio, Markku, 2014. "Likelihood estimation of consumer preferences in choice-based conjoint analysis," European Journal of Operational Research, Elsevier, vol. 239(2), pages 556-564.
- Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
- Olivier Toubia & Eric Johnson & Theodoros Evgeniou & Philippe Delquié, 2013. "Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting Time and Risk Parameters," Management Science, INFORMS, vol. 59(3), pages 613-640, June.
More about this item
Keywords
Conjoint analysis; Feature selection; Support vector machines; Business analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:564-574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.