IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v23y2004i4p545-560.html
   My bibliography  Save this article

Using Online Conversations to Study Word-of-Mouth Communication

Author

Listed:
  • David Godes

    () (Graduate School of Business Administration, Harvard University, Soldiers Field, Boston, Massachusetts 02163)

  • Dina Mayzlin

    () (School of Management, Yale University, New Haven, Connecticut 06520)

Abstract

Managers are very interested in word-of-mouth communication because they believe that a product's success is related to the word of mouth that it generates. However, there are at least three significant challenges associated with measuring word of mouth. First, how does one gather the data? Because the information is exchanged in private conversations, direct observation traditionally has been difficult. Second, what aspect of these conversations should one measure? The third challenge comes from the fact that word of mouth is not exogenous. While the mapping from word of mouth to future sales is of great interest to the firm, we must also recognize that word of mouth is an outcome of past sales. Our primary objective is to address these challenges. As a context for our study, we have chosen new television (TV) shows during the 1999–2000 seasons. Our source of word-of-mouth conversations is Usenet, a collection of thousands of newsgroups with diverse topics. We find that online conversations may offer an easy and cost-effective opportunity to measure word of mouth. We show that a measure of the dispersion of conversations across communities has explanatory power in a dynamic model of TV ratings.

Suggested Citation

  • David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
  • Handle: RePEc:inm:ormksc:v:23:y:2004:i:4:p:545-560
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1040.0071
    Download Restriction: no

    References listed on IDEAS

    as
    1. Peter J. Danaher & Isaac W. Wilson & Robert A. Davis, 2003. "A Comparison of Online and Offline Consumer Brand Loyalty," Marketing Science, INFORMS, vol. 22(4), pages 461-476, February.
    2. Ganesh Iyer & Amit Pazgal, 2003. "Internet Shopping Agents: Virtual Co-Location and Competition," Marketing Science, INFORMS, vol. 22(1), pages 85-106, November.
    3. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Abhijit V. Banerjee, 1993. "The Economics of Rumours," Review of Economic Studies, Oxford University Press, vol. 60(2), pages 309-327.
    6. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    7. Patrali Chatterjee & Donna L. Hoffman & Thomas P. Novak, 2003. "Modeling the Clickstream: Implications for Web-Based Advertising Efforts," Marketing Science, INFORMS, vol. 22(4), pages 520-541, May.
    8. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. " Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Oxford University Press, vol. 14(3), pages 350-362, December.
    9. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 107(3), pages 797-817.
    10. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    11. Lahiri, Kajal & Schmidt, Peter, 1978. "On the Estimation of Triangular Structural Systems," Econometrica, Econometric Society, vol. 46(5), pages 1217-1221, September.
    12. Reingen, Peter H, et al, 1984. " Brand Congruence in Interpersonal Relations: A Social Network Analysis," Journal of Consumer Research, Oxford University Press, vol. 11(3), pages 771-783, December.
    13. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    14. William P. Putsis, Jr. & Sridhar Balasubramanian & Edward W. Kaplan & Subrata K. Sen, 1997. "Mixing Behavior in Cross-Country Diffusion," Marketing Science, INFORMS, vol. 16(4), pages 354-369.
    15. Ganesh Iyer & Amit Pazgal, 2003. "Erratum: Internet Shopping Agents: Virtual Co-Location and Competition," Marketing Science, INFORMS, vol. 22(2), pages 271-271, November.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:23:y:2004:i:4:p:545-560. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.