IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimating Causal Installed-Base Effects: A Bias-Correction Approach

New empirical models of consumer demand that incorporate social preferences, observational learning, word-of-mouth or network effects have the feature that the adoption of others in the reference group - the Òinstalled-baseÓ - has a causal effect on current adoption behavior. Estimation of such causal installed-base effects is challenging due to the potential for spurious correlation between the adoption of agents, arising from endogenous assortive matching into social groups (or homophily) and from the existence of unobservables across agents that are correlated. In the absence of experimental variation, the preferred solution is to control for these using a rich specification of fixed-effects, which is feasible with panel data. We show that fixed-effects estimators of this sort are inconsistent in the presence of installed-base effects; in our simulations, random-effects specifications perform even worse. Our analysis reveals the tension faced by the applied empiricist in this area: a rich control for unobservables increases the credibility of the reported causal effects, but the incorporation of these controls introduces biases of a new kind in this class of models. We present two solutions: an instrumental variable approach, and a new bias-correction approach, both of which deliver consistent estimates of causal installed-base effects. The bias-correction approach is tractable in this context because we are able to exploit the structure of the problem to solve analytically for the asymptotic bias of the installed-base estimator, and to incorporate it into the estimation routine. Our approach has implications for the measurement of social effects using non-experimental data, and for measuring marketing-mix effects in the presence of state-dependence in demand, more generally. Our empirical application to the adoption of the Toyota Prius Hybrid in California reveals evidence for social influence in diffusion, and demonstrates the importance of incorporating proper controls for the biases we identify.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by NET Institute in its series Working Papers with number 11-22.

in new window

Length: 51 pages
Date of creation: Sep 2011
Handle: RePEc:net:wpaper:1122
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Marianne Bertrand & Erzo F. P. Luttmer & Sendhil Mullainathan, 2000. "Network Effects and Welfare Cultures," The Quarterly Journal of Economics, Oxford University Press, vol. 115(3), pages 1019-1055.
  2. Mohammad Arzaghi & J. Vernon Henderson, 2008. "Networking off Madison Avenue," Review of Economic Studies, Oxford University Press, vol. 75(4), pages 1011-1038.
  3. Giorgio Topa, 2001. "Social Interactions, Local Spillovers and Unemployment," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 261-295.
  4. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
  5. H. Leibenstein, 1950. "Bandwagon, Snob, and Veblen Effects in the Theory of Consumers' Demand," The Quarterly Journal of Economics, Oxford University Press, vol. 64(2), pages 183-207.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:net:wpaper:1122. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Economides)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.