IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v4y2006i1p57-81.html
   My bibliography  Save this article

Modeling preference evolution in discrete choice models: A Bayesian state-space approach

Author

Listed:
  • Mohamed Lachaab
  • Asim Ansari
  • Kamel Jedidi
  • Abdelwahed Trabelsi

Abstract

We develop discrete choice models that account for parameter driven preference dynamics. Choice model parameters may change over time because of shifting market conditions or due to changes in attribute levels over time or because of consumer learning. In this paper we show how such preference evolution can be modeled using hierarchial Bayesian state space models of discrete choice. The main feature of our approach is that it allows for the simultaneous incorporation of multiple sources of preference and choice dynamics. We show how the state space approach can include state dependence, unobserved heterogeneity, and more importantly, temporal variability in preferences using a correlated sequence of population distributions. The proposed model is very general and nests commonly used choice models in the literature as special cases. We use Markov chain monte carlo methods for estimating model parameters and apply our methodology to a scanner data set containing household brand choices over an eight-year period. Our analysis indicates that preferences exhibit significant variation over the time-span of the data and that incorporating time-variation in parameters is crucial for appropriate inferences regarding the magnitude and evolution of choice elasticities. We also find that models that ignore time variation in parameters can yield misleading inferences about the impact of causal variables. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 57-81, March.
  • Handle: RePEc:kap:qmktec:v:4:y:2006:i:1:p:57-81
    DOI: 10.1007/s11129-006-6559-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-006-6559-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11129-006-6559-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    3. Rishin Roy & Pradeep K. Chintagunta & Sudeep Haldar, 1996. "A Framework for Investigating Habits, “The Hand of the Past,” and Heterogeneity in Dynamic Brand Choice," Marketing Science, INFORMS, vol. 15(3), pages 280-299.
    4. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    5. Robert E. McCulloch & Ruey S. Tsay, 1994. "Statistical Analysis Of Economic Time Series Via Markov Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 523-539, September.
    6. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    7. Marnik G. Dekimpe & Dominique M. Hanssens, 1995. "The Persistence of Marketing Effects on Sales," Marketing Science, INFORMS, vol. 14(1), pages 1-21.
    8. McCulloch, Robert E. & Rossi, Peter E., 2000. "Reply to Nobile," Journal of Econometrics, Elsevier, vol. 99(2), pages 347-348, December.
    9. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    10. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    11. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
    12. Allenby, Greg M & Lenk, Peter J, 1995. "Reassessing Brand Loyalty, Price Sensitivity, and Merchandising Effects on Consumer Brand Choice," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 281-289, July.
    13. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    14. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
    15. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    16. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    2. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    3. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    4. Guhl, Daniel, 2019. "Addressing endogeneity in aggregate logit models with time-varying parameters for optimal retail-pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 684-698.
    5. Leeflang, Peter S.H. & Bijmolt, Tammo H.A. & van Doorn, Jenny & Hanssens, Dominique M. & van Heerde, Harald J. & Verhoef, Peter C. & Wieringa, Jaap E., 2009. "Creating lift versus building the base: Current trends in marketing dynamics," International Journal of Research in Marketing, Elsevier, vol. 26(1), pages 13-20.
    6. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    7. Tat Chan & Ravi Dhar & William Putsis, 2015. "The Technological Conundrum: How Rapidly Advancing Technology Can Lead to Commoditization," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(2), pages 119-132, June.
    8. Oliver J. Rutz & Garrett P. Sonnier, 2011. "The Evolution of Internal Market Structure," Marketing Science, INFORMS, vol. 30(2), pages 274-289, 03-04.
    9. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    10. Thales S. Teixeira & Michel Wedel & Rik Pieters, 2010. "Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing," Marketing Science, INFORMS, vol. 29(5), pages 783-804, 09-10.
    11. Olivier Rubel & Prasad A. Naik, 2017. "Robust Dynamic Estimation," Marketing Science, INFORMS, vol. 36(3), pages 453-467, May.
    12. Harald J. van Heerde & Shuba Srinivasan & Marnik G. Dekimpe, 2010. "Estimating Cannibalization Rates for Pioneering Innovations," Marketing Science, INFORMS, vol. 29(6), pages 1024-1039, 11-12.
    13. Linda Court Salisbury & Fred M. Feinberg, 2010. "—Temporal Stochastic Inflation in Choice-Based Research," Marketing Science, INFORMS, vol. 29(1), pages 32-39, 01-02.
    14. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    15. Gaku Fukunaga & Hideki Takayasu & Misako Takayasu, 2016. "Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    16. Hao Chen & Alvin Lim, 2024. "The weakening pricing power of major brand over private label grocery products: evidence from a Dutch retailer," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 396-405, October.
    17. Ryan Dew & Nicolas Padilla & Anya Shchetkina, 2024. "Your MMM is Broken: Identification of Nonlinear and Time-varying Effects in Marketing Mix Models," Papers 2408.07678, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    2. Richard Paap & Philip Hans Franses, 2000. "A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 717-744.
    3. Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
    4. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    5. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    6. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    7. Gary Koop, 2004. "Modelling the evolution of distributions: an application to Major League baseball," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(4), pages 639-655, November.
    8. González-Benito, Óscar, 2004. "Random effects choice models: seeking latent predisposition segments in the context of retail store format selection," Omega, Elsevier, vol. 32(2), pages 167-177, April.
    9. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    10. Dannewald, Till & Kreis, Henning & Silberhorn, Nadja, 2007. "Das hybride Wahlmodell und seine Anwendung im Marketing," SFB 649 Discussion Papers 2007-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. P. B. Seetharaman, 2004. "Modeling Multiple Sources of State Dependence in Random Utility Models: A Distributed Lag Approach," Marketing Science, INFORMS, vol. 23(2), pages 263-271, April.
    12. Greg M. Allenby & Thomas S. Shively & Sha Yang & Mark J. Garratt, 2004. "A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts," Marketing Science, INFORMS, vol. 23(1), pages 95-108, June.
    13. Chintagunta, Pradeep & Kyriazidou, Ekaterini & Perktold, Josef, 2001. "Panel data analysis of household brand choices," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 111-153, July.
    14. José M. Labeaga & Mercedes Martos-Partal, 2007. "A Proposal to Distinguish State Dependence and Unobserved Heterogeneity in Binary Brand Choice Models," Working Papers 2007-02, FEDEA.
    15. Dennis Fok & Richard Paap & Philip Hans Franses, 2014. "Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling," Econometrics, MDPI, vol. 2(1), pages 1-25, February.
    16. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    17. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    18. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    19. Peter Lenk, 2014. "Bayesian estimation of random utility models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 20, pages 457-497, Edward Elgar Publishing.
    20. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:4:y:2006:i:1:p:57-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.