IDEAS home Printed from
   My bibliography  Save this article

Bayesian Analysis of Simultaneous Demand and Supply


  • Sha Yang


  • Yuxin Chen


  • Greg Allenby



In models of demand and supply, consumer price sensitivity affects both the sales of a good through price, and the price that is set by producers and retailers. The relationship between the dependent variables (e.g., demand and price) and the common parameters (e.g., price sensitivity) is typically non-linear, especially when heterogeneity is present. In this paper, we develop a Bayesian method to address the computational challenge of estimating simultaneous demand and supply models that can be applied to both the analysis of household panel data and aggregated demand data. The method is developed within the context of a heterogeneous discrete choice model coupled with pricing equations derived from either specific competitive structures, or linear equations of the kind used in instrumental variable estimation, and applied to a scanner panel dataset of light beer purchases. Our analysis indicates that incorporating heterogeneity into the demand model all but eliminates the bias in the price parameter due to the endogeneity of price. The analysis also supports the use of a full information analysis. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
  • Handle: RePEc:kap:qmktec:v:1:y:2003:i:3:p:251-275
    DOI: 10.1023/B:QMEC.0000003327.55605.26

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. K. Sudhir, 2001. "Competitive Pricing Behavior in the Auto Market: A Structural Analysis," Marketing Science, INFORMS, vol. 20(1), pages 42-60, January.
    2. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    3. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    4. Michaela Draganska & Dipak Jain, 2002. "Structural Models of Competitive Market Behavior: An Estimation Approach Using Disaggregate Data," Computing in Economics and Finance 2002 61, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:1:y:2003:i:3:p:251-275. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.