IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i8p900-d538694.html
   My bibliography  Save this article

Interdependence between Green Financial Instruments and Major Conventional Assets: A Wavelet-Based Network Analysis

Author

Listed:
  • Román Ferrer

    (Departamento de Economía Financiera y Actuarial, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022 Valencia, Spain
    These authors contributed equally to this work.)

  • Rafael Benítez

    (Departamento de Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022 Valencia, Spain
    These authors contributed equally to this work.)

  • Vicente J. Bolós

    (Departamento de Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022 Valencia, Spain
    These authors contributed equally to this work.)

Abstract

This paper examines the interdependence between green financial instruments, represented by green bonds and green stocks, and a set of major conventional assets, such as Treasury, investment-grade and high-yield corporate bonds, general stocks, crude oil, and gold. To that end, a novel wavelet-based network approach that allows for assessing the degree of interconnection between green financial products and traditional asset classes across different investment horizons is applied. The empirical results show that green bonds are tightly linked to Treasury and investment-grade corporate bonds, while green stocks are strongly tied to general stocks, regardless of the specific time period and investment horizon considered. However, despite their common climate-friendly nature, there is no a remarkable association between green bonds and green stocks. This means that these green investments constitute basically two independent asset classes, with a distinct risk-return profile and aimed at a different type of investor. Furthermore, green financial products have a weak connection with high-yield corporate bonds and crude oil. These findings can have important implications for investors and policy makers in terms of investment decision, hedging strategies, and sustainability and energy policies.

Suggested Citation

  • Román Ferrer & Rafael Benítez & Vicente J. Bolós, 2021. "Interdependence between Green Financial Instruments and Major Conventional Assets: A Wavelet-Based Network Analysis," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:900-:d:538694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/8/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/8/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le, TN-Lan & Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar, 2021. "Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    2. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    3. Hammoudeh, Shawkat & Ajmi, Ahdi Noomen & Mokni, Khaled, 2020. "Relationship between green bonds and financial and environmental variables: A novel time-varying causality," Energy Economics, Elsevier, vol. 92(C).
    4. Malcolm Baker & Daniel Bergstresser & George Serafeim & Jeffrey Wurgler, 2018. "Financing the Response to Climate Change: The Pricing and Ownership of U.S. Green Bonds," NBER Working Papers 25194, National Bureau of Economic Research, Inc.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    7. Tareq Saeed & Elie Bouri & Dang Khoa Tran, 2020. "Hedging Strategies of Green Assets against Dirty Energy Assets," Energies, MDPI, vol. 13(12), pages 1-17, June.
    8. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    9. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    10. Caroline Flammer, 2020. "Green Bonds: Effectiveness and Implications for Public Policy," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 95-128.
    11. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    12. Lundgren, Amanda Ivarsson & Milicevic, Adriana & Uddin, Gazi Salah & Kang, Sang Hoon, 2018. "Connectedness network and dependence structure mechanism in green investments," Energy Economics, Elsevier, vol. 72(C), pages 145-153.
    13. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    14. Reboredo, Juan C., 2018. "Green bond and financial markets: Co-movement, diversification and price spillover effects," Energy Economics, Elsevier, vol. 74(C), pages 38-50.
    15. Naeem, Muhammad Abubakr & Farid, Saqib & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2021. "Comparative efficiency of green and conventional bonds pre- and during COVID-19: An asymmetric multifractal detrended fluctuation analysis," Energy Policy, Elsevier, vol. 153(C).
    16. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    17. Reboredo, Juan C. & Ugolini, Andrea & Aiube, Fernando Antonio Lucena, 2020. "Network connectedness of green bonds and asset classes," Energy Economics, Elsevier, vol. 86(C).
    18. Linh Pham, 2016. "Is it risky to go green? A volatility analysis of the green bond market," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 6(4), pages 263-291, October.
    19. Hachenberg, B. & Schiereck, D., 2018. "Are green bonds priced differently from conventional bonds?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109709, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    20. Dutta, Anupam & Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Impact of energy sector volatility on clean energy assets," Energy, Elsevier, vol. 212(C).
    21. Martin Lebelle & Souad Lajili Jarjir & Syrine Sassi, 2020. "Corporate Green Bond Issuances: An International Evidence," JRFM, MDPI, vol. 13(2), pages 1-21, February.
    22. Luís Aguiar-Conraria & Pedro Magalhães & Maria Soares, 2013. "The nationalization of electoral cycles in the United States: a wavelet analysis," Public Choice, Springer, vol. 156(3), pages 387-408, September.
    23. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    24. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    25. Broadstock, David C. & Cheng, Louis T.W., 2019. "Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade," Finance Research Letters, Elsevier, vol. 29(C), pages 17-22.
    26. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    27. Kanamura, Takashi, 2020. "Are green bonds environmentally friendly and good performing assets?," Energy Economics, Elsevier, vol. 88(C).
    28. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    29. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    30. Torsten Ehlers & Frank Packer, 2017. "Green bond finance and certification," BIS Quarterly Review, Bank for International Settlements, September.
    31. Ji, Qiang & Bouri, Elie & Roubaud, David, 2018. "Dynamic network of implied volatility transmission among US equities, strategic commodities, and BRICS equities," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 1-12.
    32. Wang, Jiazhen & Chen, Xin & Li, Xiaoxia & Yu, Jing & Zhong, Rui, 2020. "The market reaction to green bond issuance: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    33. Ferrer, Román & Bolós, Vicente J. & Benítez, Rafael, 2016. "Interest rate changes and stock returns: A European multi-country study with wavelets," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 1-12.
    34. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    35. Olivier David Zerbib, 2019. "The effect of pro-environmental preferences on bond prices: Evidence from green bonds," Post-Print halshs-02008641, HAL.
    36. Febi, Wulandari & Schäfer, Dorothea & Stephan, Andreas & Sun, Chen, 2018. "The impact of liquidity risk on the yield spread of green bonds," Finance Research Letters, Elsevier, vol. 27(C), pages 53-59.
    37. Zerbib, Olivier David, 2019. "The effect of pro-environmental preferences on bond prices: Evidence from green bonds," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 39-60.
    38. Vishaal Baulkaran, 2019. "Stock market reaction to green bond issuance," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 331-340, September.
    39. Arif, Muhammad & Naeem, Muhammad Abubakr & Farid, Saqib & Nepal, Rabindra & Jamasb, Tooraj, 2022. "Diversifier or more? Hedge and safe haven properties of green bonds during COVID-19," Energy Policy, Elsevier, vol. 168(C).
    40. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    41. Tang, Dragon Yongjun & Zhang, Yupu, 2020. "Do shareholders benefit from green bonds?," Journal of Corporate Finance, Elsevier, vol. 61(C).
    42. Flammer, Caroline, 2021. "Corporate green bonds," Journal of Financial Economics, Elsevier, vol. 142(2), pages 499-516.
    43. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    44. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    45. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    46. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price connectedness between green bond and financial markets," Economic Modelling, Elsevier, vol. 88(C), pages 25-38.
    47. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    48. Maria Jua Bachelet & Leonardo Becchetti & Stefano Manfredonia, 2019. "The Green Bonds Premium Puzzle: The Role of Issuer Characteristics and Third-Party Verification," Sustainability, MDPI, vol. 11(4), pages 1-22, February.
    49. Nguyen, Thi Thu Ha & Naeem, Muhammad Abubakr & Balli, Faruk & Balli, Hatice Ozer & Vo, Xuan Vinh, 2021. "Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds," Finance Research Letters, Elsevier, vol. 40(C).
    50. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    51. Britta Hachenberg & Dirk Schiereck, 2018. "Are green bonds priced differently from conventional bonds?," Journal of Asset Management, Palgrave Macmillan, vol. 19(6), pages 371-383, October.
    52. Souad Lajili Jarjir & Martin Lebelle & Syrine Sassi, 2020. "Corporate Green Bond Issuances: An International Evidence," Post-Print hal-03044129, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Orzechowski & Małgorzata Bombol, 2022. "Energy Security, Sustainable Development and the Green Bond Market," Energies, MDPI, vol. 15(17), pages 1-17, August.
    2. Arash Sioofy Khoojine & Ziyun Feng & Mahboubeh Shadabfar & Negar Sioofy Khoojine, 2023. "Analyzing volatility patterns in the Chinese stock market using partial mutual information-based distances," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-21, December.
    3. Inzamam Ul Haq, 2023. "Time‐frequency comovement among green financial assets and cryptocurrency uncertainties," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 52(1), February.
    4. Goodell, John W. & Corbet, Shaen & Yadav, Miklesh Prasad & Kumar, Satish & Sharma, Sudhi & Malik, Kunjana, 2022. "Time and frequency connectedness of green equity indices: Uncovering a socially important link to Bitcoin," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Su, Xianfang & Guo, Dawei & Dai, Liang, 2023. "Do green bond and green stock markets boom and bust together? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Ibrahim D. Raheem & Oluyele Akinkugbe & Agboola H. Yusuf & Mahdi Ghaemi Asl, 2023. "Hedging strategies among financial markets: the case of green and brown assets," Empirical Economics, Springer, vol. 65(2), pages 831-873, August.
    7. Yousaf, Imran & Suleman, Muhammad Tahir & Demirer, Riza, 2022. "Green investments: A luxury good or a financial necessity?," Energy Economics, Elsevier, vol. 105(C).
    8. Sohag, Kazi & Sokolova, Yulia & Vilamová, Šárka & Blueschke, Dmitri, 2023. "Volatility transmission from critical minerals prices to green investments," Resources Policy, Elsevier, vol. 82(C).
    9. Sharma, Gagan Deep & Sarker, Tapan & Rao, Amar & Talan, Gaurav & Jain, Mansi, 2022. "Revisiting conventional and green finance spillover in post-COVID world: Evidence from robust econometric models," Global Finance Journal, Elsevier, vol. 51(C).
    10. Jing Deng & Jingxuan Lu & Yujie Zheng & Xiaoyun Xing & Cheng Liu & Tao Qin, 2022. "The Impact of the COVID-19 Pandemic on the Connectedness between Green Industries and Financial Markets in China: Evidence from Time-Frequency Domain with Portfolio Implications," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    11. Min Zhang & Chengrong Li & Jinshan Zhang & Hongwei Chen, 2023. "How Green Finance Affects Green Total Factor Productivity—Evidence from China," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    12. Díaz, Antonio & Esparcia, Carlos & López, Raquel, 2022. "The diversifying role of socially responsible investments during the COVID-19 crisis: A risk management and portfolio performance analysis," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 39-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arif, Muhammad & Hasan, Mudassar & Alawi, Suha M. & Naeem, Muhammad Abubakr, 2021. "COVID-19 and time-frequency connectedness between green and conventional financial markets," Global Finance Journal, Elsevier, vol. 49(C).
    2. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Ghardallou, Wafa & Umar, Zaghum, 2022. "Is greenness an optimal hedge for sectoral stock indices?," Economic Modelling, Elsevier, vol. 117(C).
    3. Naeem, Muhammad Abubakr & Farid, Saqib & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2021. "Comparative efficiency of green and conventional bonds pre- and during COVID-19: An asymmetric multifractal detrended fluctuation analysis," Energy Policy, Elsevier, vol. 153(C).
    4. Arif, Muhammad & Naeem, Muhammad Abubakr & Farid, Saqib & Nepal, Rabindra & Jamasb, Tooraj, 2022. "Diversifier or more? Hedge and safe haven properties of green bonds during COVID-19," Energy Policy, Elsevier, vol. 168(C).
    5. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Adekoya, Oluwasegun B. & Hammoudeh, Shawkat, 2023. "What do we know about the price spillover between green bonds and Islamic stocks and stock market indices?," Global Finance Journal, Elsevier, vol. 55(C).
    6. Joao Leitao & Joaquim Ferreira & Ernesto Santibanez‐Gonzalez, 2021. "Green bonds, sustainable development and environmental policy in the European Union carbon market," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2077-2090, May.
    7. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    8. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    9. Xiang, Shihui & Cao, Yanyan, 2023. "Green finance and natural resources commodities prices: Evidence from COVID-19 period," Resources Policy, Elsevier, vol. 80(C).
    10. Yadav, Mikesh Prasad & Pandey, Asheesh & Taghizadeh-Hesary, Farhad & Arya, Vandana & Mishra, Nandita, 2023. "Volatility spillover of green bond with renewable energy and crypto market," Renewable Energy, Elsevier, vol. 212(C), pages 928-939.
    11. Reboredo, Juan C. & Ugolini, Andrea & Ojea-Ferreiro, Javier, 2022. "Do green bonds de-risk investment in low-carbon stocks?," Economic Modelling, Elsevier, vol. 108(C).
    12. Su, Tong & Zhang, Zuopeng (Justin) & Lin, Boqiang, 2022. "Green bonds and conventional financial markets in China: A tale of three transmission modes," Energy Economics, Elsevier, vol. 113(C).
    13. Jiang, Yonghong & Wang, Jieru & Ao, Zhiming & Wang, Yujou, 2022. "The relationship between green bonds and conventional financial markets: Evidence from quantile-on-quantile and quantile coherence approaches," Economic Modelling, Elsevier, vol. 116(C).
    14. Bhutta, Umair Saeed & Tariq, Adeel & Farrukh, Muhammad & Raza, Ali & Iqbal, Muhammad Khalid, 2022. "Green bonds for sustainable development: Review of literature on development and impact of green bonds," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Yuan, Xi & Qin, Meng & Zhong, Yifan & Nicoleta-Claudia, Moldovan, 2023. "Financial roles in green investment based on the quantile connectedness," Energy Economics, Elsevier, vol. 117(C).
    16. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Doğan, Buhari & Ghosh, Sudeshna, 2023. "Sustainable debt and gas markets: A new look using the time-varying wavelet-windowed cross-correlation approach," Energy Economics, Elsevier, vol. 120(C).
    17. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price connectedness between green bond and financial markets," Economic Modelling, Elsevier, vol. 88(C), pages 25-38.
    18. Pham, Linh, 2021. "Frequency connectedness and cross-quantile dependence between green bond and green equity markets," Energy Economics, Elsevier, vol. 98(C).
    19. Umar, Zaghum & Abrar, Afsheen & Hadhri, Sinda & Sokolova, Tatiana, 2023. "The connectedness of oil shocks, green bonds, sukuks and conventional bonds," Energy Economics, Elsevier, vol. 119(C).
    20. Li, Yanxi & Yu, Conghui & Shi, Jinyan & Liu, Yuanyuan, 2023. "How does green bond issuance affect total factor productivity? Evidence from Chinese listed enterprises," Energy Economics, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:900-:d:538694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.