IDEAS home Printed from https://ideas.repec.org/a/kap/pubcho/v156y2013i3p387-408.html
   My bibliography  Save this article

The nationalization of electoral cycles in the United States: a wavelet analysis

Author

Listed:
  • Luís Aguiar-Conraria
  • Pedro Magalhães
  • Maria Soares

Abstract

We take a new look at electoral sectionalism and dynamic nationalization in presidential elections. We treat this problem as one of synchronism of electoral cycles, which we estimate by using wavelets. After providing a self-contained introduction to wavelet analysis, we use it to assess the degree and the dynamics of electoral synchronization in the United States. We determine clusters of states where electoral swings have been more and less in sync with each other and with the national cycle. Then, we analyze how the degree of synchronism of electoral cycles has changed through time, answering questions as to when, to what extent, and where has a tendency towards a “universality of political trends” in presidential elections been more strongly felt. We present evidence strongly in favor of an increase in the dynamic nationalization of presidential elections taking place since the 1950s, largely associated with a convergence in most (but not all) Southern states. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Luís Aguiar-Conraria & Pedro Magalhães & Maria Soares, 2013. "The nationalization of electoral cycles in the United States: a wavelet analysis," Public Choice, Springer, vol. 156(3), pages 387-408, September.
  • Handle: RePEc:kap:pubcho:v:156:y:2013:i:3:p:387-408
    DOI: 10.1007/s11127-012-0052-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11127-012-0052-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11127-012-0052-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguiar-Conraria, LuI´s & Joana Soares, Maria, 2011. "Business cycle synchronization and the Euro: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 477-489, September.
    2. Kawato, Sadafumi, 1987. "Nationalization and Partisan Realignment in Congressional Elections," American Political Science Review, Cambridge University Press, vol. 81(4), pages 1235-1250, December.
    3. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    4. Alan T. Murray, 2010. "Quantitative Geography," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 143-163, February.
    5. Nardulli, Peter F., 1995. "The Concept of a Critical Realignment, Electoral Behavior, and Political Change," American Political Science Review, Cambridge University Press, vol. 89(1), pages 10-22, March.
    6. António Rua, 2012. "Money Growth and Inflation in the Euro Area: A Time-Frequency View," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 875-885, December.
    7. Marco Gallegati & Mauro Gallegati & James Bernard Ramsey & Willi Semmler, 2011. "The US Wage Phillips Curve across Frequencies and over Time," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(4), pages 489-508, August.
    8. Vertz, Laura L. & Frendreis, John P. & Gibson, James L., 1987. "Nationalization of the Electorate in the United States," American Political Science Review, Cambridge University Press, vol. 81(3), pages 961-966, September.
    9. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    10. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    11. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    12. Merrill, Samuel & Grofman, Bernard & Brunell, Thomas L., 2008. "Cycles in American National Electoral Politics, 1854–2006: Statistical Evidence and an Explanatory Model," American Political Science Review, Cambridge University Press, vol. 102(1), pages 1-17, February.
    13. Nicholas A. Valentino & David O. Sears, 2005. "Old Times There Are Not Forgotten: Race and Partisan Realignment in the Contemporary South," American Journal of Political Science, John Wiley & Sons, vol. 49(3), pages 672-688, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís Francisco Aguiar & Pedro C. Magalhães & Maria Joana Soares, 2010. "Synchronism in Electoral Cycles: How United are the United States?," NIPE Working Papers 17/2010, NIPE - Universidade do Minho.
    2. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    3. Faria, Gonçalo & Verona, Fabio, 2018. "The equity risk premium and the low frequency of the term spread," Research Discussion Papers 7/2018, Bank of Finland.
    4. Gallegati, Marco & Ramsey, James B. & Semmler, Willi, 2014. "Interest rate spreads and output: A time scale decomposition analysis using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 283-290.
    5. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    6. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    7. Abid, Fathi & Kaffel, Bilel, 2018. "Time–frequency wavelet analysis of the interrelationship between the global macro assets and the fear indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1028-1045.
    8. repec:zbw:bofrdp:2018_007 is not listed on IDEAS
    9. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    10. repec:zbw:bofrdp:2017_001 is not listed on IDEAS
    11. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    12. Caraiani, Petre, 2012. "Money and output: New evidence based on wavelet coherence," Economics Letters, Elsevier, vol. 116(3), pages 547-550.
    13. Gallegati, Marco & Ramsey, James B., 2013. "Structural change and phase variation: A re-examination of the q-model using wavelet exploratory analysis," Structural Change and Economic Dynamics, Elsevier, vol. 25(C), pages 60-73.
    14. Caraiani, Petre, 2015. "Estimating DSGE models across time and frequency," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 33-49.
    15. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    16. Verona, Fabio, 2016. "Time–frequency characterization of the U.S. financial cycle," Economics Letters, Elsevier, vol. 144(C), pages 75-79.
    17. Marczak, Martyna & Gómez, Víctor, 2015. "Cyclicality of real wages in the USA and Germany: New insights from wavelet analysis," Economic Modelling, Elsevier, vol. 47(C), pages 40-52.
    18. Berdiev, Aziz N. & Chang, Chun-Ping, 2015. "Business cycle synchronization in Asia-Pacific: New evidence from wavelet analysis," Journal of Asian Economics, Elsevier, vol. 37(C), pages 20-33.
    19. Patrick M. Crowley & David Hudgins, 2022. "Monetary policy objectives and economic outcomes: What can we learn from a wavelet‐based optimal control approach?," Manchester School, University of Manchester, vol. 90(2), pages 144-170, March.
    20. Jiang, Chun & Chang, Tsangyao & Li, Xiao-Lin, 2015. "Money growth and inflation in China: New evidence from a wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 249-261.
    21. Funashima, Yoshito, 2017. "Time-varying leads and lags across frequencies using a continuous wavelet transform approach," Economic Modelling, Elsevier, vol. 60(C), pages 24-28.
    22. João Martins, 2022. "Bond Yields Movement Similarities and Synchronization in the G7: A Time–Frequency Analysis," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 189-214, July.

    More about this item

    Keywords

    Electoral cycles synchronism; Nationalization; Wavelet analysis; H70; C32; D72;
    All these keywords.

    JEL classification:

    • H70 - Public Economics - - State and Local Government; Intergovernmental Relations - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:pubcho:v:156:y:2013:i:3:p:387-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.