IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6495-d459056.html
   My bibliography  Save this article

People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility

Author

Listed:
  • Manuela Ingaldi

    (Faculty of Management, Czestochowa University of Technology, al. Armii Krajowej 19b, 42-200 Czestochowa, Poland)

  • Dorota Klimecka-Tatar

    (Faculty of Management, Czestochowa University of Technology, al. Armii Krajowej 19b, 42-200 Czestochowa, Poland)

Abstract

Energy from hydrogen is an appropriate technological choice in the context of sustainable development. The opportunities offered by the use of energy from hydrogen also represent a significant challenge for mobile technologies and daily life. Nevertheless, despite a significant amount of research and information regarding the benefits of hydrogen energy, it creates considerable controversy in many countries. Globally, there is a lack of understanding about the production process of hydrogen energy and the benefits it provides, which leads to concerns regarding the consistency of its use. In this study, an original questionnaire was used as a research tool to determine the opinions of inhabitants of countries in which hydrogen energy is underutilized and where the infrastructure for hydrogen energy is underdeveloped. Respondents presented their attitude to ecology, and indicated their knowledge regarding the operation of hydrogen energy and the use of hydrogen fuel. The results indicate that society is not convinced that the safety levels for energy derived from hydrogen are adequate. It can be concluded that knowledge about hydrogen as an energy source, and the production safety and storage methods of hydrogen, is very low. Negative attitudes to hydrogen energy can be an important barrier in the development of this energy in many countries.

Suggested Citation

  • Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6495-:d:459056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irlenbusch, Bernd & Saxler, David J., 2019. "The role of social information, market framing, and diffusion of responsibility as determinants of socially responsible behavior," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 80(C), pages 141-161.
    2. Yi Zhang & Hexu Sun & Yingjun Guo, 2020. "Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen," Energies, MDPI, vol. 13(20), pages 1-25, October.
    3. Michelon, Giovanna & Rodrigue, Michelle & Trevisan, Elisabetta, 2020. "The marketization of a social movement: Activists, shareholders and CSR disclosure," Accounting, Organizations and Society, Elsevier, vol. 80(C).
    4. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    5. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    6. Ingeborgrud, Lina & Ryghaug, Marianne, 2019. "The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 507-516.
    7. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    8. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    9. Richard Green & Yacob Mulugetta & Zhong Xiang Zhang, 2014. "Sustainable energy policy," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 33, pages 532-550, Edward Elgar Publishing.
    10. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    11. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    13. Werner Hediger, 2018. "The Corporate Social Responsibility of Hydropower Companies in Alpine Regions—Theory and Policy Recommendations," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    14. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    15. Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
    16. Kolk, Ans, 2016. "The social responsibility of international business: From ethics and the environment to CSR and sustainable development," Journal of World Business, Elsevier, vol. 51(1), pages 23-34.
    17. Richa Kothari & D. Buddhi & R.L. Sawhney, 2004. "Sources and technology for hydrogen production: a review," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 154-178.
    18. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe," Journal of Transport Geography, Elsevier, vol. 78(C), pages 214-229.
    19. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    20. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    21. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    22. Nazari, Jamal A. & Hrazdil, Karel & Mahmoudian, Fereshteh, 2017. "Assessing social and environmental performance through narrative complexity in CSR reports," Journal of Contemporary Accounting and Economics, Elsevier, vol. 13(2), pages 166-178.
    23. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    24. Stéphane Allard & Vincent Debusschere & Silvana Mima & Tuan Tran Quoc & Nouredine Hadjsaid & Patrick Criqui, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Post-Print hal-03133109, HAL.
    25. Shunichi Hienuki & Yoshie Hirayama & Tadahiro Shibutani & Junji Sakamoto & Jo Nakayama & Atsumi Miyake, 2019. "How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    26. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    27. Babiker, Mustafa & Reilly, John M. & Jacoby, Henry D., 2000. "The Kyoto Protocol and developing countries," Energy Policy, Elsevier, vol. 28(8), pages 525-536, July.
    28. John Andrews & Bahman Shabani, 2014. "The role of hydrogen in a global sustainable energy strategy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 474-489, September.
    29. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    30. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    31. Muller, Alan, 0. "Global Versus Local CSR Strategies," European Management Journal, Elsevier, vol. 24(2-3), pages 189-198, April.
    32. Breyer, Christian & Heinonen, Sirkka & Ruotsalainen, Juho, 2017. "New consciousness: A societal and energetic vision for rebalancing humankind within the limits of planet Earth," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 7-15.
    33. Peter Madzík & Pavol Budaj & Anna Chocholáková, 2018. "Practical Experiences with the Application of Corporate Social Responsibility Principles in a Higher Education Environment," Sustainability, MDPI, vol. 10(6), pages 1-25, May.
    34. Mark Trexler & Laura Kosloff, 1998. "The 1997 Kyoto Protocol: What Does It Mean for Project-Based Climate Change Mitigation?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(1), pages 1-58, January.
    35. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    36. Wang, Ning & Pan, Huizhong & Zheng, Wenhui, 2017. "Assessment of the incentives on electric vehicle promotion in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 177-189.
    37. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    38. Nowotny, Janusz & Dodson, John & Fiechter, Sebastian & Gür, Turgut M. & Kennedy, Brendan & Macyk, Wojciech & Bak, Tadeusz & Sigmund, Wolfgang & Yamawaki, Michio & Rahman, Kazi A., 2018. "Towards global sustainability: Education on environmentally clean energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2541-2551.
    39. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    40. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastjan Lazar & Dorota Klimecka-Tatar & Matevz Obrecht, 2021. "Sustainability Orientation and Focus in Logistics and Supply Chains," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    2. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    3. Ahsan, Nabeel & Hewage, Kasun & Razi, Faran & Hussain, Syed Asad & Sadiq, Rehan, 2023. "A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    5. Katarzyna Szymczyk & Dilek Şahin & Haşim Bağcı & Ceyda Yerdelen Kaygın, 2021. "The Effect of Energy Usage, Economic Growth, and Financial Development on CO 2 Emission Management: An Analysis of OECD Countries with a High Environmental Performance Index," Energies, MDPI, vol. 14(15), pages 1-21, August.
    6. Fan Yang & Yanming Sun & Yuan Zhang & Tao Wang, 2021. "Factors Affecting the Manufacturing Industry Transformation and Upgrading: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area," IJERPH, MDPI, vol. 18(13), pages 1-14, July.
    7. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    8. Tomasz Chajduga & Manuela Ingaldi & Dorota Klimecka-Tatar, 2021. "Management of the Documentation Release by the Programmable Electrical Energy Flow-Individually Made Machine Called Documentomat," Energies, MDPI, vol. 14(17), pages 1-17, August.
    9. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Rohit Bansal & Bahman Shabani & Sidhartha Harichandan, 2023. "Overview of hydrogen economy in Australia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    13. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana & Magdalena Tutak & Jarosław Brodny, 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector," Energies, MDPI, vol. 14(9), pages 1-30, April.
    14. Joanna Rosak-Szyrocka & Justyna Żywiołek, 2022. "Qualitative Analysis of Household Energy Awareness in Poland," Energies, MDPI, vol. 15(6), pages 1-16, March.
    15. Chilou Zhou & Yiran Zheng & Xianhui Liu, 2022. "Fretting Characteristics of Rubber X-Ring Exposed to High-Pressure Gaseous Hydrogen," Energies, MDPI, vol. 15(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbo Li & Ruyin Long & Hong Chen & Baoqi Dou & Feiyu Chen & Xiao Zheng & Zhengxia He, 2020. "Public Preference for Electric Vehicle Incentive Policies in China: A Conjoint Analysis," IJERPH, MDPI, vol. 17(1), pages 1-16, January.
    2. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    3. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    4. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    5. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    7. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    8. Azarafshar, Roshanak & Vermeulen, Wessel N., 2020. "Electric vehicle incentive policies in Canadian provinces," Energy Economics, Elsevier, vol. 91(C).
    9. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    10. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    11. Briseño, Hugo & Ramirez-Nafarrate, Adrian & Araz, Ozgur M., 2021. "A multivariate analysis of hybrid and electric vehicles sales in Mexico," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    12. Liu, Xiaoling & Sun, Xiaohua & Zheng, Hui & Huang, Dongdong, 2021. "Do policy incentives drive electric vehicle adoption? Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 49-62.
    13. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    14. Santos, Georgina & Davies, Huw, 2020. "Incentives for quick penetration of electric vehicles in five European countries: Perceptions from experts and stakeholders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 326-342.
    15. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    16. Meilinda Fitriani Nur Maghfiroh & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2021. "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    17. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    18. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    19. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    20. Yuqing Lin & Jingjing Wu & Yongqing Xiong, 2021. "Sensitivity of the Nonsubsidized Consumption Promotion Mechanisms of New Energy Vehicles to Potential Consumers’ Purchase Intention," Sustainability, MDPI, vol. 13(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6495-:d:459056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.