IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v38y2004i1p39-60.html
   My bibliography  Save this article

Intershopping duration: an analysis using multiweek data

Author

Listed:
  • Bhat, Chandra R.
  • Frusti, Teresa
  • Zhao, Huimin
  • Schönfelder, Stefan
  • Axhausen, Kay W.

Abstract

This study examines the rhythms in the shopping activity participation of individuals over a multiweek period by modeling the duration between successive shopping participations. A hazard-based duration model is used to model intershopping duration, and a latent segmentation method is applied to distinguish between erratic shoppers and regular shoppers. The paper applies the methodology to examine the regularity and frequency of shopping behavior of individuals using a continuous six-week travel survey collected in the cities of Halle and Karlsruhe in Germany in the fall of 1999. The empirical results underscore the need to adopt a flexible hazard model form for analyzing intershopping durations. The results also provide important insights into the determinants of the regularity and frequency of individuals' shopping activity participation behavior.

Suggested Citation

  • Bhat, Chandra R. & Frusti, Teresa & Zhao, Huimin & Schönfelder, Stefan & Axhausen, Kay W., 2004. "Intershopping duration: an analysis using multiweek data," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 39-60, January.
  • Handle: RePEc:eee:transb:v:38:y:2004:i:1:p:39-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(02)00093-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Meyer, Bruce D, 1990. "Unemployment Insurance and Unemployment Spells," Econometrica, Econometric Society, vol. 58(4), pages 757-782, July.
    3. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    4. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    5. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
    6. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    7. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    8. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    9. Ram Pendyala & Konstadinos Goulias, 2002. "Time use and activity perspectives in travel behavior research," Transportation, Springer, vol. 29(1), pages 1-4, February.
    10. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    11. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andre de Palma & Fay Dunkerley & Stef Proost, 2010. "Trip Chaining: Who Wins Who Loses?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 19(1), pages 223-258, March.
    2. Lee, J.F. Jennifer & Kwok, Peter K. & Williams, Jeffrey, 2014. "Heterogeneity among motorists in traffic-congested areas in southern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 281-293.
    3. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    4. Tai-Yu Ma & Iragaël Joly & Charles Raux, 2010. "A shared frailty semi-parametric markov renewal model for travel and activity time-use pattern analysis," Working Papers hal-00477695, HAL.
    5. Sharman, Bryce W. & Roorda, Matthew J., 2013. "Multilevel modelling of commercial vehicle inter-arrival duration using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 94-107.
    6. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2015. "Understanding time use: Daily or weekly data?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 38-57.
    7. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Axhausen, Kay W., 2005. "An analysis of multiple interepisode durations using a unifying multivariate hazard model," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 797-823, November.
    8. Mohammadian, Abolfazl & Doherty, Sean T., 2006. "Modeling activity scheduling time horizon: Duration of time between planning and execution of pre-planned activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 475-490, July.
    9. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    10. Steven Farber & Antonio Páez & Ruben Mercado & Matthew Roorda & Catherine Morency, 2011. "A time-use investigation of shopping participation in three Canadian cities: is there evidence of social exclusion?," Transportation, Springer, vol. 38(1), pages 17-44, January.
    11. Lee, Backjin & Timmermans, Harry J.P., 2007. "A latent class accelerated hazard model of activity episode durations," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 426-447, May.
    12. Kitamura, Ryuichi & Yamamoto, Toshiyuki & Susilo, Yusak O. & Axhausen, Kay W., 2006. "How routine is a routine? An analysis of the day-to-day variability in prism vertex location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 259-279, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:38:y:2004:i:1:p:39-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.