IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0207810.html
   My bibliography  Save this article

An empirical analysis of post-work grocery shopping activity duration using modified accelerated failure time model to differentiate time-dependent and time-independent covariates

Author

Listed:
  • Ke Wang
  • Xin Ye
  • Jie Ma

Abstract

In this paper, the accelerated failure time (AFT) model is modified to analyze post-work grocery shopping activity duration. Much previous shopping duration analysis was conducted using the proportional hazard (PH) modeling approach. Once the proportionality assumption was violated, the traditional accelerated failure time (TAFT) model was usually selected as an alternative modeling approach. However, a TAFT model only has covariates with non-proportional and time-dependent effects on the hazard overtime while a PH model only accommodates covariates with proportional and time-independent effects. Neither of them considers the possibility that some of covariates may have proportional and time-independent effects and some may have non-proportional and time-dependent effects on the hazard value in one model. To address this issue, the paper generalizes the TAFT model and develops a modified accelerated failure time (MAFT) model to accommodate both time-dependent and time-independent covariates for activity duration analysis. Checking on the proportionality assumption indicates that the assumption is not valid in the post-work grocery shopping activity data extracted from the 2017 National Household Travel Survey (NHTS) conducted by the U.S. Department of Transportation (USDOT). Both TAFT and MAFT models are developed for comparisons and analysis. The empirical and statistical results show that there do exist two different types of covariates affecting shopping activity duration, including covariates only with proportional and time-independent effects (i.e. working duration, commute travel time) and those with non-proportional and time-dependent effects. The MAFT model can capture the subtleties in various types of covariate effects and help better understand how those covariates affect activity duration overtime. This paper also shows the importance to develop a flexible duration model with both time-dependent and time-independent covariates for accurately evaluating travel demand management (TDM) policies, like flexible work hours.

Suggested Citation

  • Ke Wang & Xin Ye & Jie Ma, 2018. "An empirical analysis of post-work grocery shopping activity duration using modified accelerated failure time model to differentiate time-dependent and time-independent covariates," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0207810
    DOI: 10.1371/journal.pone.0207810
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207810
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207810&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0207810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ke Wang & Xin Ye & Ram M Pendyala & Yajie Zou, 2017. "On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
    2. Xin Ye & Ram M. Pendyala, 2009. "A Probit-based Joint Discrete-continuous Model System: Analyzing the Relationship between Timing and Duration of Maintenance Activities," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 403-423, Springer.
    3. Bhat, Chandra R. & Frusti, Teresa & Zhao, Huimin & Schönfelder, Stefan & Axhausen, Kay W., 2004. "Intershopping duration: an analysis using multiweek data," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 39-60, January.
    4. Tang, Jinjun & Zhang, Shen & Chen, Xinqiang & Liu, Fang & Zou, Yajie, 2018. "Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 430-443.
    5. Joel L. Horowitz, 1983. "Statistical Comparison of Non-Nested Probabilistic Discrete Choice Models," Transportation Science, INFORMS, vol. 17(3), pages 319-350, August.
    6. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    7. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Axhausen, Kay W., 2005. "An analysis of multiple interepisode durations using a unifying multivariate hazard model," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 797-823, November.
    8. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    9. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    10. Lee, Backjin & Timmermans, Harry J.P., 2007. "A latent class accelerated hazard model of activity episode durations," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 426-447, May.
    11. Guanqun Cao & David Todem & Lijian Yang & Jason P. Fine, 2013. "Evaluating Statistical Hypotheses Using Weakly-Identifiable Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 256-273, June.
    12. Xin Ye & Ke Wang & Yajie Zou & Dominique Lord, 2018. "A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-17, May.
    13. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdisalam Hassan Muse & Samuel Mwalili & Oscar Ngesa & Christophe Chesneau & Afrah Al-Bossly & Mahmoud El-Morshedy, 2022. "Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based Regression Models: An Application to Oncology Data," Mathematics, MDPI, vol. 10(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Wang & Xin Ye, 2021. "Development of alternative stochastic frontier models for estimating time-space prism vertices," Transportation, Springer, vol. 48(2), pages 773-807, April.
    2. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    3. Tai-Yu Ma & Charles Raux & Eric Cornelis & Iragaël Joly, 2009. "multi-state non-homogeneous semi-markov model of daily activity type, timing and duration sequence," Post-Print halshs-00310900, HAL.
    4. Lee, Backjin & Timmermans, Harry J.P., 2007. "A latent class accelerated hazard model of activity episode durations," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 426-447, May.
    5. Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
    6. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    7. Tai-Yu Ma & Iragaël Joly & Charles Raux, 2010. "A shared frailty semi-parametric markov renewal model for travel and activity time-use pattern analysis," Working Papers hal-00477695, HAL.
    8. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    9. Lee, J.F. Jennifer & Kwok, Peter K. & Williams, Jeffrey, 2014. "Heterogeneity among motorists in traffic-congested areas in southern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 281-293.
    10. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    11. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    12. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    13. Forsyth, Ann & Lytle, Leslie & Van Riper, David, 2010. "Finding food: Issues and challenges in using Geographic Information Systems (GIS) to measure food access," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 43-65.
    14. Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
    15. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    16. Joshua Wang & Eric J Miller, 2014. "A Prism-Based and Gap-Based Approach to Shopping Location Choice," Environment and Planning B, , vol. 41(6), pages 977-1005, December.
    17. Steven Farber & Antonio Páez & Ruben Mercado & Matthew Roorda & Catherine Morency, 2011. "A time-use investigation of shopping participation in three Canadian cities: is there evidence of social exclusion?," Transportation, Springer, vol. 38(1), pages 17-44, January.
    18. Tri Basuki Joewono & Ari K. M. Tarigan & Muhamad Rizki, 2019. "Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    19. Yichuan Peng & Yuming Jiang & Jian Lu & Yajie Zou, 2018. "Examining the effect of adverse weather on road transportation using weather and traffic sensors," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-14, October.
    20. Jie Ma & Xin Ye & Cheng Shi, 2018. "Development of Multivariate Ordered Probit Model to Understand Household Vehicle Ownership Behavior in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.