IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v41y2014i6p977-1005.html
   My bibliography  Save this article

A Prism-Based and Gap-Based Approach to Shopping Location Choice

Author

Listed:
  • Joshua Wang

    (IBI Group, 30 International Boulevard, Toronto, ON M9W 5P3, Canada)

  • Eric J Miller

    (Department of Civil Engineering, University of Toronto, 35 St. George Street, Room 305A, Toronto, ON M5S 1A4, Canada)

Abstract

In this paper we present a prism-based and gap-based approach to model shopping location choice. Location choice is a fundamental decision in the activity scheduling process. We propose a simple yet robust model to capture shopping location choice behaviour. In this model, an individual first chooses a time window (or gap); the choice of the shopping location depends on the gap chosen. This notion arises from our understanding that shopping location choice behaviour depends on shopping type, scheduling constraints, time of day, and day of week. Or quite simply, where you shop depends on when you shop. The gap-based approach to destination choice is envisioned as a small but significant step towards a more comprehensive location choice model in a dynamic scheduling environment.

Suggested Citation

  • Joshua Wang & Eric J Miller, 2014. "A Prism-Based and Gap-Based Approach to Shopping Location Choice," Environment and Planning B, , vol. 41(6), pages 977-1005, December.
  • Handle: RePEc:sae:envirb:v:41:y:2014:i:6:p:977-1005
    DOI: 10.1068/b130063p
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b130063p
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b130063p?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    2. Timmermans, Harry J.P. & Zhang, Junyi, 2009. "Modeling household activity travel behavior: Examples of state of the art modeling approaches and research agenda," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 187-190, February.
    3. Arentze, T.A. & Timmermans, H.J.P., 2005. "Information gain, novelty seeking and travel: a model of dynamic activity-travel behavior under conditions of uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 125-145.
    4. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    5. Anas, Alex, 1983. "Discrete choice theory, information theory and the multinomial logit and gravity models," Transportation Research Part B: Methodological, Elsevier, vol. 17(1), pages 13-23, February.
    6. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    7. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    8. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    9. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    2. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.
    3. Nathalie Picard & Andre de Palma & Sophie Dantan, 2013. "Intra-Household Discrete Choice Models Of Mode Choice And Residential Location," Articles, International Journal of Transport Economics, vol. 40(3).
    4. Ermagun, Alireza & Levinson, David, 2016. "Intra-household bargaining for school trip accompaniment of children: A group decision approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 222-234.
    5. André de Palma & Nathalie Picard & Ignacio Inoa, 2014. "Discrete choice decision-making with multiple decision-makers within the household," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 363-382, Edward Elgar Publishing.
    6. André de Palma & Nathalie Picard & Robin Lindsey, 2021. "Activity and Transportation Decisions within Households," THEMA Working Papers 2021-18, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    8. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    9. Palma, André de & Lindsey, Robin & Picard, Nathalie, 2015. "Trip-timing decisions and congestion with household scheduling preferences," Economics of Transportation, Elsevier, vol. 4(1), pages 118-131.
    10. Chandra Bhat, 2001. "Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis," Transportation Science, INFORMS, vol. 35(1), pages 61-79, February.
    11. Ignacio A. INOA & Nathalie PICARD & André de PALMA, 2014. "Intra-household Decision Models of Residential and Job Location," THEMA Working Papers 2014-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    12. Louis Grange & Felipe González & Ignacio Vargas & Rodrigo Troncoso, 2015. "A Logit Model With Endogenous Explanatory Variables and Network Externalities," Networks and Spatial Economics, Springer, vol. 15(1), pages 89-116, March.
    13. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    14. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    15. Yamamoto, Toshiyuki & Madre, Jean-Loup & Kitamura, Ryuichi, 2004. "An analysis of the effects of French vehicle inspection program and grant for scrappage on household vehicle transaction," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 905-926, December.
    16. Ke Wang & Xin Ye & Jie Ma, 2018. "An empirical analysis of post-work grocery shopping activity duration using modified accelerated failure time model to differentiate time-dependent and time-independent covariates," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    17. Ho, Chinh & Mulley, Corinne, 2015. "Intra-household Interactions in tour-based mode choice: The role of social, temporal, spatial and resource constraints," Transport Policy, Elsevier, vol. 38(C), pages 52-63.
    18. Martina Menon & Federico Perali & Marcella Veronesi, 2014. "Recovering Individual Preferences for Non-Market Goods: A Collective Travel-Cost Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(2), pages 438-457.
    19. Frank Goetzke & Regine Gerike & Antonio Páez & Elenna Dugundji, 2015. "Social interactions in transportation: analyzing groups and spatial networks," Transportation, Springer, vol. 42(5), pages 723-731, September.
    20. Bhat, Chandra R. & Frusti, Teresa & Zhao, Huimin & Schönfelder, Stefan & Axhausen, Kay W., 2004. "Intershopping duration: an analysis using multiweek data," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 39-60, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:41:y:2014:i:6:p:977-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.