IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v31y2004i4p429-456.html
   My bibliography  Save this article

An Exploration of the Relationship between Timing and Duration of Maintenance Activities

Author

Listed:
  • Ram Pendyala
  • Chandra Bhat

Abstract

No abstract is available for this item.

Suggested Citation

  • Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
  • Handle: RePEc:kap:transp:v:31:y:2004:i:4:p:429-456
    DOI: 10.1023/B:PORT.0000037060.42921.35
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:PORT.0000037060.42921.35
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:PORT.0000037060.42921.35?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    2. Chandra Bhat & Rajul Misra, 1999. "Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends," Transportation, Springer, vol. 26(2), pages 193-229, May.
    3. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
    4. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    5. Mohammad M. Hamed & Fred L. Mannering, 1993. "Modeling Travelers' Postwork Activity Involvement: Toward a New Methodology," Transportation Science, INFORMS, vol. 27(4), pages 381-394, November.
    6. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    7. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    8. Comte, F., 1998. "Discrete and continuous time cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 207-226, November.
    9. Ryuichi Kitamura & Cynthia Chen & Ram Pendyala & Ravi Narayanan, 2000. "Micro-simulation of daily activity-travel patterns for travel demand forecasting," Transportation, Springer, vol. 27(1), pages 25-51, February.
    10. David Levinson & Ajay Kumar, 1995. "Activity, Travel, and the Allocation of Time," Working Papers 199505, University of Minnesota: Nexus Research Group.
    11. Andrew Harvey & Maria Taylor, 2000. "Activity settings and travel behaviour: A social contact perspective," Transportation, Springer, vol. 27(1), pages 53-73, February.
    12. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    13. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    14. Wang, James Jixian, 1996. "Timing utility of daily activities and its impact on travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 189-206, May.
    15. Bhat, Chandra R., 1998. "A model of post home-arrival activity participation behavior," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 387-400, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    2. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
    3. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
    4. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    5. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    7. Konstadinos G. Goulias & Ram M. Pendyala, 2014. "Choice context," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 5, pages 101-130, Edward Elgar Publishing.
    8. Jacky Chin & Herlina & Shu-Chiang Lin & Satria Fadil Persada & Choesnul Jaqin & Ilma Mufidah, 2020. "Preventive maintenance model for heating ventilation air conditioning in pharmacy manufacturing sector," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 45-53, February.
    9. Tai-Yu Ma & Charles Raux & Eric Cornelis & Iragaël Joly, 2009. "multi-state non-homogeneous semi-markov model of daily activity type, timing and duration sequence," Post-Print halshs-00310900, HAL.
    10. Tai-Yu Ma & Iragaël Joly & Charles Raux, 2010. "A shared frailty semi-parametric markov renewal model for travel and activity time-use pattern analysis," Working Papers hal-00477695, HAL.
    11. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    12. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    13. Sebastian Astroza & Venu M. Garikapati & Ram M. Pendyala & Chandra R. Bhat & Patricia L. Mokhtarian, 2019. "Representing heterogeneity in structural relationships among multiple choice variables using a latent segmentation approach," Transportation, Springer, vol. 46(5), pages 1755-1784, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra Bhat, 2001. "Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis," Transportation Science, INFORMS, vol. 35(1), pages 61-79, February.
    2. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    5. Italo Meloni & Erika Spissu & Massimiliano Bez, 2007. "A Model of the Dynamic Process of Time Allocation to Discretionary Activities," Transportation Science, INFORMS, vol. 41(1), pages 15-28, February.
    6. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    7. Langerudi, Mehran Fasihozaman & Javanmardi, Mahmoud & Shabanpour, Ramin & Rashidi, Taha Hossein & Mohammadian, Abolfazl, 2017. "Incorporating in-home activities in ADAPTS activity-based framework: A sequential conditional probability approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 48-60.
    8. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
    9. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    10. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    11. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    12. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    13. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    14. Tri Basuki Joewono & Ari K. M. Tarigan & Muhamad Rizki, 2019. "Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    15. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
    16. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
    17. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    18. Bhat, Chandra R., 1996. "A generalized multiple durations proportional hazard model with an application to activity behavior during the evening work-to-home commute," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 465-480, December.
    19. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan, 2005. "A multidimensional mixed ordered-response model for analyzing weekend activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 255-278, March.
    20. Moyin Li & Nebiyou Tilahun, 2020. "A comparative analysis of discretionary time allocation for social and non-social activities in the U.S. between 2003 and 2013," Transportation, Springer, vol. 47(2), pages 893-909, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:31:y:2004:i:4:p:429-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.