IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i2p447-460.html
   My bibliography  Save this article

Estimating a model of dynamic activity generation based on one-day observations: Method and results

Author

Listed:
  • Arentze, Theo A.
  • Ettema, Dick
  • Timmermans, Harry J.P.

Abstract

In this paper we develop and explore an approach to estimate dynamic models of activity generation on one-day travel-diary data. Dynamic models predict multi-day activity patterns of individuals taking into account dynamic needs as well as day-varying preferences and time-budgets. We formulate an ordered-logit model of dynamic activity-agenda-formation decisions and show how one-day observation probabilities can be derived from the model as a function of the model's parameters and, with that, how parameters can be estimated using standard loglikelihood estimation. A scale parameter cannot be identified because information on within-person variability is lacking in one-day data. An application of the method to data from a national travel survey illustrates the method. A test on simulated data indicates that, given a pre-set scale, the parameters can be identified and that estimates are robust for a source of heterogeneity not captured in the model. This result indicates that dynamic activity-based models of the kind considered here can be estimated from data that are less costly to collect and that support the large sample sizes typically required for travel-demand modeling. We conclude therefore that the proposed approach opens up a way to develop large-scale dynamic activity-based models of travel demand.

Suggested Citation

  • Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:2:p:447-460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00100-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    2. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    3. Scott, Darren M. & Kanaroglou, Pavlos S., 2002. "An activity-episode generation model that captures interactions between household heads: development and empirical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 875-896, December.
    4. Cinzia Cirillo & Kay Axhausen, 2010. "Dynamic model of activity-type choice and scheduling," Transportation, Springer, vol. 37(1), pages 15-38, January.
    5. Moshe Hirsh & Joseph N. Prashkea & Moshe Ben-Akiva, 1986. "Dynamic Model of Weekly Activity Pattern," Transportation Science, INFORMS, vol. 20(1), pages 24-36, February.
    6. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    8. Theo Arentze & Harry Timmermans & Peter Jorritsma & Marie-José Olde Kalter & Arnout Schoemakers, 2008. "More gray hair—but for whom? Scenario-based simulations of elderly activity travel patterns in 2020," Transportation, Springer, vol. 35(5), pages 613-627, August.
    9. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Axhausen, Kay W., 2005. "An analysis of multiple interepisode durations using a unifying multivariate hazard model," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 797-823, November.
    10. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    11. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
    12. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    13. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    14. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.
    15. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
    16. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    17. Dick Ettema & Tanja Lippe, 2009. "Weekly rhythms in task and time allocation of households," Transportation, Springer, vol. 36(2), pages 113-129, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bobin & Shao, Chunfu & Ji, Xun, 2017. "Dynamic analysis of holiday travel behaviour with integrated multimodal travel information usage: A life-oriented approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 255-280.
    2. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    3. Maya Abou-Zeid & Moshe Ben-Akiva, 2012. "Well-being and activity-based models," Transportation, Springer, vol. 39(6), pages 1189-1207, November.
    4. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    5. Nursitihazlin Ahmad Termida & Yusak O. Susilo & Joel P. Franklin, 2016. "Examining the effects of out-of-home and in-home constraints on leisure activity participation in different seasons of the year," Transportation, Springer, vol. 43(6), pages 997-1021, November.
    6. Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    7. Han, Qi & Arentze, Theo & Timmermans, Harry & Janssens, Davy & Wets, Geert, 2011. "The effects of social networks on choice set dynamics: Results of numerical simulations using an agent-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 310-322, May.
    8. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    2. Annesha Enam & Karthik C. Konduri & Naveen Eluru & Srinath Ravulaparthy, 2018. "Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey," Transportation, Springer, vol. 45(6), pages 1783-1810, November.
    3. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    4. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2015. "Understanding time use: Daily or weekly data?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 38-57.
    5. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
    6. La Paix Puello, Lissy & Chowdhury, Saidul & Geurs, Karst, 2019. "Using panel data for modelling duration dynamics of outdoor leisure activities," Journal of choice modelling, Elsevier, vol. 31(C), pages 141-155.
    7. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    8. Elisabetta Cherchi & Cinzia Cirillo, 2014. "Understanding variability, habit and the effect of long period activity plan in modal choices: a day to day, week to week analysis on panel data," Transportation, Springer, vol. 41(6), pages 1245-1262, November.
    9. Cherchi, Elisabetta & Cirillo, Cinzia & Ortúzar, Juan de Dios, 2017. "Modelling correlation patterns in mode choice models estimated on multiday travel data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 146-153.
    10. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    11. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Axhausen, Kay W., 2005. "An analysis of multiple interepisode durations using a unifying multivariate hazard model," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 797-823, November.
    12. Nursitihazlin Ahmad Termida & Yusak O. Susilo & Joel P. Franklin, 2016. "Examining the effects of out-of-home and in-home constraints on leisure activity participation in different seasons of the year," Transportation, Springer, vol. 43(6), pages 997-1021, November.
    13. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    14. Dane, Gamze & Arentze, Theo A. & Timmermans, Harry J.P. & Ettema, Dick, 2014. "Simultaneous modeling of individuals’ duration and expenditure decisions in out-of-home leisure activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 93-103.
    15. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    16. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    17. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    18. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    19. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2016. "Variability in daily activity-travel patterns: the case of a one-week travel diary," Post-Print halshs-01389479, HAL.
    20. Raux, Charles & Zoubir, Ayman & Geyik, Mirkan, 2017. "Who are bike sharing schemes members and do they travel differently? The case of Lyon’s “Velo’v” scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 350-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:2:p:447-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.