IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v40y2013i2p413-430.html
   My bibliography  Save this article

Representing and estimating interactions between activities in a need-based model of activity generation

Author

Listed:
  • Linda Nijland
  • Theo Arentze
  • Harry Timmermans

Abstract

Although several activity-based models made the transition to practice in recent years, modeling dynamic activity generation and especially, the mechanisms underlying activity generation are not well incorporated in the current activity-based models. For instance, current models assume that activities are independent, but to the extent that different activities fulfill the same underlying needs and act as partial substitutes, their interactions/dependencies should be taken into account. For example, recreational, leisure, and social activities tend to be partly substitutable since they satisfy a common need of relaxation, and when undertaken together with others, social needs will be satisfied as well. This paper describes the parameter estimation of a need-based activity generation model, which includes the representation of possible interaction effects between activities. A survey was carried out to collect activity data for a typical week and a specific day among a sample of individuals. The diary data contain detailed information on activity history and future planning. Estimation of the model involves a range of shopping, social, leisure, and sports activities, as dependent variables, and socioeconomic, day preference, and interaction variables, as explanatory variables. The results show that several person, household, and dwelling attributes influence activity-episode timing decisions in a longitudinal time frame and, thus, the frequency and day choice of conducting the social, leisure, and sports activities. Furthermore, interactions were found in the sense that several activities influence the need for other activities and some activities affect the utility of conducting another activity on the same day. Copyright The Author(s) 2013

Suggested Citation

  • Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
  • Handle: RePEc:kap:transp:v:40:y:2013:i:2:p:413-430
    DOI: 10.1007/s11116-012-9423-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-012-9423-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-012-9423-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.
    2. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    3. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    4. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    5. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
    6. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    7. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    8. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.
    9. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    10. Konrad Meister & Martin Frick & Kay Axhausen, 2005. "A GA-based household scheduler," Transportation, Springer, vol. 32(5), pages 473-494, September.
    11. Patricia Mokhtarian & Ilan Salomon & Susan Handy, 2006. "The Impacts of Ict on leisure Activities and Travel: A Conceptual Exploration," Transportation, Springer, vol. 33(3), pages 263-289, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. WooKeol Cho & Jinhee Kim & Jin-Hyuk Chung, 2023. "A Need-Based Approach for Modeling Recurrent Discretionary Activity Participation Patterns for Travel Demand Analysis," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    2. Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
    2. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    5. Italo Meloni & Erika Spissu & Massimiliano Bez, 2007. "A Model of the Dynamic Process of Time Allocation to Discretionary Activities," Transportation Science, INFORMS, vol. 41(1), pages 15-28, February.
    6. Akar, Gulsah & Clifton, Kelly J. & Doherty, Sean T., 2012. "Redefining activity types: Who participates in which leisure activity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1194-1204.
    7. Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.
    8. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
    9. Christa Hubers & Tim Schwanen & Martin Dijst, 2008. "Ict And Temporal Fragmentation Of Activities: An Analytical Framework And Initial Empirical Findings," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 99(5), pages 528-546, December.
    10. Ruiz, Tomás & Habib, Khandker Nurul, 2016. "Scheduling decision styles on leisure and social activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 304-317.
    11. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    12. Kato, Hironori & Matsumoto, Manabu, 2009. "Intra-household interaction in a nuclear family: A utility-maximizing approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 191-203, February.
    13. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    14. Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "Companionship and time investment in social fields at different life cycle stages: Implications for activity and travel modeling and simulation," Research in Transportation Economics, Elsevier, vol. 68(C), pages 18-28.
    15. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    16. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    17. Manoj, M. & Verma, Ashish, 2015. "Activity–travel behaviour of non-workers from Bangalore City in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 400-424.
    18. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
    19. Linda Nijland & Theo Arentze & Harry Timmermans, 2012. "Incorporating planned activities and events in a dynamic multi-day activity agenda generator," Transportation, Springer, vol. 39(4), pages 791-806, July.
    20. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:40:y:2013:i:2:p:413-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.