IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i2p251-265.html
   My bibliography  Save this article

A need-based model of multi-day, multi-person activity generation

Author

Listed:
  • Arentze, Theo A.
  • Timmermans, Harry J.P.

Abstract

In this paper, we develop a model of activity generation for a multi-day planning period that takes within-household interactions between individuals into account. The model is based on the theoretical framework we proposed in earlier work which assumes that utilities of activities are a dynamic function of needs of individuals at person and household levels. In the model, individuals use a utility-of-time threshold parameter to decide when to include an activity in their agenda. The threshold represents a personal perception of time pressure and is continuously adapted based on learning. In an exchange phase, the individuals (re-)allocate household tasks based on a negotiation protocol with the aim of improving the group result. The model takes into account day-varying time-budgets of individuals, influences of perception, selfishness-altruism, joint activity participation and competences of individuals to satisfy particular needs. We illustrate the model by means of simulations and suggest ways for future research.

Suggested Citation

  • Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:2:p:251-265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00066-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    2. Konrad Meister & Martin Frick & Kay Axhausen, 2005. "A GA-based household scheduler," Transportation, Springer, vol. 32(5), pages 473-494, September.
    3. Sivaramakrishnan Srinivasan & Chandra Bhat, 2005. "Modeling household interactions in daily in-home and out-of-home maintenance activity participation," Transportation, Springer, vol. 32(5), pages 523-544, September.
    4. John Gliebe & Frank Koppelman, 2005. "Modeling household activity–travel interactions as parallel constrained choices," Transportation, Springer, vol. 32(5), pages 449-471, September.
    5. Zhang, Junyi & Timmermans, Harry J. P. & Borgers, Aloys, 2005. "A model of household task allocation and time use," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 81-95, January.
    6. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
    2. Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
    3. An, Qian & Gordon, Peter & Moore II, James, 2014. "Location choice for a continuous simulation of long periods under changing conditions," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 85-103.
    4. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    5. Allahviranloo, Mahdieh & Axhausen, Kay, 2018. "An optimization model to measure utility of joint and solo activities," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 172-187.
    6. repec:kap:transp:v:45:y:2018:i:1:d:10.1007_s11116-016-9720-8 is not listed on IDEAS
    7. Dekker, Thijs & Hess, Stephane & Arentze, Theo & Chorus, Caspar, 2014. "Incorporating needs-satisfaction in a discrete choice model of leisure activities," Journal of Transport Geography, Elsevier, vol. 38(C), pages 66-74.
    8. Dane, Gamze & Arentze, Theo A. & Timmermans, Harry J.P. & Ettema, Dick, 2014. "Simultaneous modeling of individuals’ duration and expenditure decisions in out-of-home leisure activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 93-103.
    9. Theo A. Arentze & Benedict G. C. Dellaert & Caspar G. Chorus, 2015. "Incorporating Mental Representations in Discrete Choice Models of Travel Behavior: Modeling Approach and Empirical Application," Transportation Science, INFORMS, vol. 49(3), pages 577-590, August.
    10. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    11. Chorus, Caspar G., 2015. "Models of moral decision making: Literature review and research agenda for discrete choice analysis," Journal of choice modelling, Elsevier, vol. 16(C), pages 69-85.
    12. Marki, Fabian & Charypar, David & Axhausen, Kay, 2014. "Location choice for a continuous simulation of long periods under changing conditions," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 1-18.
    13. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    14. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    15. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    16. Seo, Toru & Kusakabe, Takahiko & Gotoh, Hiroto & Asakura, Yasuo, 2019. "Interactive online machine learning approach for activity-travel survey," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 362-373.
    17. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Activity-travel adaptations in response to a tradable driving credits scheme," Transport Policy, Elsevier, vol. 72(C), pages 79-88.
    18. Vinayak, Pragun & Dias, Felipe F. & Astroza, Sebastian & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels," Transport Policy, Elsevier, vol. 72(C), pages 129-137.
    19. Farhana Yasmin & Catherine Morency & Matthew J. Roorda, 2017. "Trend analysis of activity generation attributes over time," Transportation, Springer, vol. 44(1), pages 69-89, January.
    20. repec:spr:infott:v:19:y:2018:i:1:d:10.1007_s40558-018-0105-z is not listed on IDEAS
    21. Querini, Florent & Benetto, Enrico, 2014. "Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 149-161.
    22. Jenelius, Erik, 2012. "The value of travel time variability with trip chains, flexible scheduling and correlated travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 762-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:2:p:251-265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.