IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i2p251-265.html
   My bibliography  Save this article

A need-based model of multi-day, multi-person activity generation

Author

Listed:
  • Arentze, Theo A.
  • Timmermans, Harry J.P.

Abstract

In this paper, we develop a model of activity generation for a multi-day planning period that takes within-household interactions between individuals into account. The model is based on the theoretical framework we proposed in earlier work which assumes that utilities of activities are a dynamic function of needs of individuals at person and household levels. In the model, individuals use a utility-of-time threshold parameter to decide when to include an activity in their agenda. The threshold represents a personal perception of time pressure and is continuously adapted based on learning. In an exchange phase, the individuals (re-)allocate household tasks based on a negotiation protocol with the aim of improving the group result. The model takes into account day-varying time-budgets of individuals, influences of perception, selfishness-altruism, joint activity participation and competences of individuals to satisfy particular needs. We illustrate the model by means of simulations and suggest ways for future research.

Suggested Citation

  • Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:2:p:251-265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00066-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    2. Sivaramakrishnan Srinivasan & Chandra Bhat, 2005. "Modeling household interactions in daily in-home and out-of-home maintenance activity participation," Transportation, Springer, vol. 32(5), pages 523-544, September.
    3. John Gliebe & Frank Koppelman, 2005. "Modeling household activity–travel interactions as parallel constrained choices," Transportation, Springer, vol. 32(5), pages 449-471, September.
    4. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    5. Konrad Meister & Martin Frick & Kay Axhausen, 2005. "A GA-based household scheduler," Transportation, Springer, vol. 32(5), pages 473-494, September.
    6. Zhang, Junyi & Timmermans, Harry J. P. & Borgers, Aloys, 2005. "A model of household task allocation and time use," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 81-95, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, Hironori & Matsumoto, Manabu, 2009. "Intra-household interaction in a nuclear family: A utility-maximizing approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 191-203, February.
    2. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    3. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    4. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    5. Ho, Chinh & Mulley, Corinne, 2015. "Intra-household Interactions in tour-based mode choice: The role of social, temporal, spatial and resource constraints," Transport Policy, Elsevier, vol. 38(C), pages 52-63.
    6. Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "Companionship and time investment in social fields at different life cycle stages: Implications for activity and travel modeling and simulation," Research in Transportation Economics, Elsevier, vol. 68(C), pages 18-28.
    7. Ermagun, Alireza & Levinson, David, 2016. "Intra-household bargaining for school trip accompaniment of children: A group decision approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 222-234.
    8. Yan, Qianqian & Feng, Tao & Timmermans, Harry, 2023. "A model of household shared parking decisions incorporating equity-seeking household dynamics and leadership personality traits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Hejun Kang & Darren Scott, 2011. "Impact of different criteria for identifying intra-household interactions: a case study of household time allocation," Transportation, Springer, vol. 38(1), pages 81-99, January.
    10. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    11. Hu, Yang & van Wee, Bert & Ettema, Dick, 2023. "Intra-household decisions and the impact of the built environment on activity-travel behavior: A review of the literature," Journal of Transport Geography, Elsevier, vol. 106(C).
    12. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    13. Allahviranloo, Mahdieh & Axhausen, Kay, 2018. "An optimization model to measure utility of joint and solo activities," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 172-187.
    14. Hejun Kang & Darren Scott, 2008. "An integrated spatio-temporal GIS toolkit for exploring intra-household interactions," Transportation, Springer, vol. 35(2), pages 253-268, March.
    15. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    16. Yoon, Seo Youn & Goulias, Kostas, 2009. "Constraint-based assessment of intra-household bargaining on time allocation to activities and travel using individual accessibility measures," University of California Transportation Center, Working Papers qt4df0k0w3, University of California Transportation Center.
    17. Wang, Donggen & Li, Jiukun, 2009. "A model of household time allocation taking into consideration of hiring domestic helpers," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 204-216, February.
    18. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.
    19. Nathalie Picard & Andre de Palma & Sophie Dantan, 2013. "Intra-Household Discrete Choice Models Of Mode Choice And Residential Location," Articles, International Journal of Transport Economics, vol. 40(3).
    20. Roorda, Matthew J. & Carrasco, Juan A. & Miller, Eric J., 2009. "An integrated model of vehicle transactions, activity scheduling and mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 217-229, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:2:p:251-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.