IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v126y2025ics0966692325001103.html
   My bibliography  Save this article

Heterogeneity in inter-episode intervals for discretionary activities; covariate-dependent finite mixture models

Author

Listed:
  • Labee, Pim
  • Kim, Seheon
  • Rasouli, Soora

Abstract

Even though the importance of considering day-to-day variability in travel demand modeling has long been acknowledged in the field, most state-of-the-art activity-based models still only have a single-day prediction horizon. As such, bias arises from the aggregation to ‘an average’ day. A few which differentiate between days of the week (such as Albatross) still fail to incorporate dependencies between activities conducted in multiple days. Understanding the heterogeneity in (ir)regularity of discretionary activities and the inter-episode durations with which they are conducted, is a stepping stone to extend ABMs to multi-day horizon models. Over two years of GPS data from the Netherlands are used to estimate exponential models to capture irregular activity conductors, while Erlang-k models are estimated to represent the regular activity conductors. A mixture model of the exponential-Erlang-2 model is presented where the extent of activity-regularity is endogenously estimated. The heterogeneity within each group is estimated in a non-parametric fashion and, in certain cases, is shown to outperform the parametric equivalence. The proposed models are applied to grocery shopping, non-grocery shopping and leisure activities.

Suggested Citation

  • Labee, Pim & Kim, Seheon & Rasouli, Soora, 2025. "Heterogeneity in inter-episode intervals for discretionary activities; covariate-dependent finite mixture models," Journal of Transport Geography, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001103
    DOI: 10.1016/j.jtrangeo.2025.104219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325001103
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.