IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v184y2022ics0040162522005583.html
   My bibliography  Save this article

Ambiguity preference, social learning and adoption of soil testing and formula fertilization technology

Author

Listed:
  • Wu, Haixia
  • Li, Jianping
  • Ge, Yan

Abstract

This paper explores the impact of ambiguity preference and social learning on farmers' new technology adoption. The results show that (1) Ambiguity preference has a significant impact on farmers adoption of soil testing and formula fertilization technology, and the influence of ambiguity preference on soil testing technology adoption is more significant than on formula fertilization technology. (2) The impacts of social learning on farmers' adoption of soil testing technology and formula fertilization technology are significantly positive. (3) The adoption possibility of soil testing and formula fertilization technology demonstrates heterogeneity in different levels of farmers' cognitive abilities and ages, which indicates that ambiguity preference and social learning could positively promote farmers' soil testing and formula fertilization technology adoption, and the impact of social learning in elder farmers are more obvious. Overall, this research provides a micro foundation and policy recommendations for household soil testing and formula fertilization technology promotion in rural China and sheds light upon how the government can formulate relevant policies to promote green environmental development.

Suggested Citation

  • Wu, Haixia & Li, Jianping & Ge, Yan, 2022. "Ambiguity preference, social learning and adoption of soil testing and formula fertilization technology," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522005583
    DOI: 10.1016/j.techfore.2022.122037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522005583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.122037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Mawunyo Dzanku & Robert Darko Osei & Paul Kwame Nkegbe & Isaac Osei-Akoto, 2022. "Information delivery channels and agricultural technology uptake: experimental evidence from Ghana," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 82-120.
    2. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    3. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.
    4. Brick, Kerri & Visser, Martine, 2015. "Risk preferences, technology adoption and insurance uptake: A framed experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 118(C), pages 383-396.
    5. Carter, Michael R. & Cheng, Lan & Sarris, Alexandros, 2016. "Where and how index insurance can boost the adoption of improved agricultural technologies," Journal of Development Economics, Elsevier, vol. 118(C), pages 59-71.
    6. Haixia Wu & Hantao Hao & Hongzhen Lei & Yan Ge & Hengtong Shi & Yan Song, 2021. "Farm Size, Risk Aversion and Overuse of Fertilizer: The Heterogeneity of Large-Scale and Small-Scale Wheat Farmers in Northern China," Land, MDPI, vol. 10(2), pages 1-15, January.
    7. Chowdhury, Shyamal & Smits, Joeri & Sun, Qigang, 2020. "Contract Structure, Time Preference, and Technology Adoption," IZA Discussion Papers 13590, Institute of Labor Economics (IZA).
    8. Nakano, Yuko & Tsusaka, Takuji W. & Aida, Takeshi & Pede, Valerien O., 2018. "Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania," World Development, Elsevier, vol. 105(C), pages 336-351.
    9. Manu Goyal & Serguei Netessine, 2007. "Strategic Technology Choice and Capacity Investment Under Demand Uncertainty," Management Science, INFORMS, vol. 53(2), pages 192-207, February.
    10. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    11. Bryan Bollinger, 2015. "Green technology adoption: An empirical study of the Southern California garment cleaning industry," Quantitative Marketing and Economics (QME), Springer, vol. 13(4), pages 319-358, December.
    12. Camerer, Colin & Weber, Martin, 1992. "Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 325-370, October.
    13. Michal Bauer & Julie Chytilova & Jonathan Morduch, 2012. "Behavioral Foundations of Microcredit: Experimental and Survey Evidence from Rural India," American Economic Review, American Economic Association, vol. 102(2), pages 1118-1139, April.
    14. Quang Nguyen & Colin Camerer & Tomomi Tanaka, 2010. "Risk and Time Preferences Linking Experimental and Household Data from Vietnam," Post-Print halshs-00547090, HAL.
    15. Barham, Bradford L. & Chavas, Jean-Paul & Fitz, Dylan & Salas, Vanessa Ríos & Schechter, Laura, 2014. "The roles of risk and ambiguity in technology adoption," Journal of Economic Behavior & Organization, Elsevier, vol. 97(C), pages 204-218.
    16. Robin Cubitt & Gijs Kuilen & Sujoy Mukerji, 2018. "The strength of sensitivity to ambiguity," Theory and Decision, Springer, vol. 85(3), pages 275-302, October.
    17. Howard D. Leathers & John C. Quiggin, 1991. "Interactions between Agricultural and Resource Policy: The Importance of Attitudes toward Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 757-764.
    18. Ariel BenYishay & A Mushfiq Mobarak, 2019. "Social Learning and Incentives for Experimentation and Communication," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 976-1009.
    19. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    20. Chowdhury, Shyamal & Smits, Joeri & Sun, Qigang, 2020. "Contract structure, time preference, and technology adoption," GLO Discussion Paper Series 633, Global Labor Organization (GLO).
    21. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    22. Andrew D. Foster & Mark R. Rosenzweig, 2010. "Microeconomics of Technology Adoption," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 395-424, September.
    23. Jayson L. Lusk & Keith H. Coble, 2005. "Risk Perceptions, Risk Preference, and Acceptance of Risky Food," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 393-405.
    24. Shawn A Cole & A Nilesh Fernando, 2021. "‘Mobile’izing Agricultural Advice Technology Adoption Diffusion and Sustainability [Dial “a” for agriculture: using ICTs for agricultural extension in development countries]," The Economic Journal, Royal Economic Society, vol. 131(633), pages 192-219.
    25. Takahashi, Kazushi & Mano, Yukichi & Otsuka, Keijiro, 2019. "Learning from experts and peer farmers about rice production: Experimental evidence from Cote d’Ivoire," World Development, Elsevier, vol. 122(C), pages 157-169.
    26. Elaine M. Liu, 2013. "Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1386-1403, October.
    27. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    28. Williams Ali & Awudu Abdulai & Renan Goetz & Victor Owusu, 2021. "Risk, ambiguity and willingness to participate in crop insurance programs: Evidence from a field experiment," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 679-703, July.
    29. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    30. Krishnan, Pramila & Patnam, Manasa, 2013. "Neighbours and Extension Agents in Ethiopia: Who matters more for technology diffusion?," CEPR Discussion Papers 9539, C.E.P.R. Discussion Papers.
    31. Wang, Honglin & Yu, Fan & Reardon, Thomas & Huang, Jikun & Rozelle, Scott, 2013. "Social learning and parameter uncertainty in irreversible investments: Evidence from greenhouse adoption in northern China," China Economic Review, Elsevier, vol. 27(C), pages 104-120.
    32. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    33. Donkor, Emmanuel & Onakuse, Stephen & Bogue, Joe & De Los Rios-Carmenado, Ignacio, 2019. "Fertiliser adoption and sustainable rural livelihood improvement in Nigeria," Land Use Policy, Elsevier, vol. 88(C).
    34. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    35. Bryan Bollinger, 2015. "Green technology adoption: An empirical study of the Southern California garment cleaning industry," Quantitative Marketing and Economics (QME), Springer, vol. 13(4), pages 319-358, December.
    36. Adams, Abdulai & Jumpah, Emmanuel Tetteh & Caesar, Livingstone Divine, 2021. "The nexuses between technology adoption and socioeconomic changes among farmers in Ghana," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    37. Mao, Hui & Zhou, Li & Ying, RuiYao & Pan, Dan, 2021. "Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China," Land Use Policy, Elsevier, vol. 109(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Xu & Hongbin Liu & Jie Lyu & Ying Xue, 2022. "What Influences Farmers’ Adoption of Soil Testing and Formulated Fertilization Technology in Black Soil Areas? An Empirical Analysis Based on Logistic-ISM Model," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    2. Mai D. Quy & Dang T. Ha, 2023. "Pig Farmers’ Preferences for the Adoption of Good Animal Husbandry Practices in Vietnam: A Choice Experiment," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    3. Baozhi Li & Bin Guo & Qibiao Zhu & Ni Zhuo, 2023. "Impact of Technical Training and Personalized Information Support on Farmers’ Fertilization Behavior: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.
    4. Hao Dong & Yang Zhang & Tianqing Chen & Juan Li, 2023. "Acceptance Intention and Behavioral Response to Soil-Testing Formula Fertilization Technology: An Empirical Study of Agricultural Land in Shaanxi Province," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
    5. Leshan Yu & Yan Song & Haixia Wu & Hengtong Shi, 2023. "Credit Constraint, Interlinked Insurance and Credit Contract and Farmers’ Adoption of Innovative Seeds-Field Experiment of the Loess Plateau," Land, MDPI, vol. 12(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    2. Ahsanuzzaman, & Priyo, Asad Karim Khan & Nuzhat, Kanti Ananta, 2022. "Effects of communication, group selection, and social learning on risk and ambiguity attitudes: Experimental evidence from Bangladesh," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 96(C).
    3. Crentsil, Christian & Gschwandtner, Adelina & Wahhaj, Zaki, 2020. "The effects of risk and ambiguity aversion on technology adoption: Evidence from aquaculture in Ghana," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 46-68.
    4. Verschoor, Arjan & D’Exelle, Ben & Perez-Viana, Borja, 2016. "Lab and life: Does risky choice behaviour observed in experiments reflect that in the real world?," Journal of Economic Behavior & Organization, Elsevier, vol. 128(C), pages 134-148.
    5. Tristan Le Cotty & Elodie Maître d’Hôtel & Raphael Soubeyran & Julie Subervie, 2018. "Linking Risk Aversion, Time Preference and Fertiliser Use in Burkina Faso," Journal of Development Studies, Taylor & Francis Journals, vol. 54(11), pages 1991-2006, November.
    6. Ambali, Omotuyole I. & Areal, Francisco J. & Georgantzis, Nikolaos & Oyetunde-Usman, Zainab, 2021. "Examining the Role of Spatially-Dependent Time Preference in Improved Rice Technology Adoption Decisions," 2021 Conference, August 17-31, 2021, Virtual 315286, International Association of Agricultural Economists.
    7. Camille Tevenart & Marielle Brunette, 2021. "Role of Farmers’ Risk and Ambiguity Preferences on Fertilization Decisions: An Experiment," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    8. Ward, Patrick S. & Singh, Vartika, 2013. "Risk and Ambiguity Preferences and the Adoption of New Agricultural Technologies: Evidence from Field Experiments in Rural India," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150794, Agricultural and Applied Economics Association.
    9. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    10. Li Zhao & Shumin Liu & Haiying Gu & David Ahlstrom, 2023. "Risk Amplification, Risk Preference and Acceptance of Transgenic Technology," Agriculture, MDPI, vol. 13(10), pages 1-22, September.
    11. Visser, Martine & Jumare, Hafsah & Brick, Kerri, 2020. "Risk preferences and poverty traps in the uptake of credit and insurance amongst small-scale farmers in South Africa," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 826-836.
    12. Yitayew, Asresu & Abdulai, Awudu & Yigezu, Yigezu A. & Deneke, Tilaye T. & Kassie, Girma T., 2021. "Impact of agricultural extension services on the adoption of improved wheat variety in Ethiopia: A cluster randomized controlled trial," World Development, Elsevier, vol. 146(C).
    13. Goytom Abraha Kahsay & Workineh Asmare Kassie & Haileselassie Medhin & Lars Gårn Hansen, 2022. "Are religious farmers more risk taking? Empirical evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 617-632, July.
    14. Omotuyole Isiaka Ambali & Francisco Jose Areal & Nikolaos Georgantzis, 2021. "Improved Rice Technology Adoption: The Role of Spatially-Dependent Risk Preference," Agriculture, MDPI, vol. 11(8), pages 1-13, July.
    15. Mao, Hui & Zhou, Li & Ying, RuiYao & Pan, Dan, 2021. "Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China," Land Use Policy, Elsevier, vol. 109(C).
    16. Bradford L. Barham & Jean-Paul Chavas & Dylan Fitz & Vanessa Ríos-Salas & Laura Schechter, 2015. "Risk, learning, and technology adoption," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 11-24, January.
    17. Freudenreich, Hanna & Musshoff, Oliver, 2022. "Experience of losses and aversion to uncertainty - experimental evidence from farmers in Mexico," Ecological Economics, Elsevier, vol. 195(C).
    18. Freudenreich, Hanna & Musshoff, Oliver & Wiercinski, Ben, 2017. "The Relationship between Farmers' Shock Experiences and their Uncertainty Preferences - Experimental Evidence from Mexico," GlobalFood Discussion Papers 256212, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    19. Sheremenko, Ganna & Magnan, Nicholas, 2015. "Gender-specific Risk Preferences and Fertilizer Use in Kenyan Farming Households," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205766, Agricultural and Applied Economics Association.
    20. de Brauw, Alan & Eozenou, Patrick, 2014. "Measuring risk attitudes among Mozambican farmers," Journal of Development Economics, Elsevier, vol. 111(C), pages 61-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522005583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.