IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v74y2023ics0928765523000465.html
   My bibliography  Save this article

Irrigation technology adaptation for a sustainable agriculture: A panel endogenous switching analysis on the Italian farmland productivity

Author

Listed:
  • Auci, Sabrina
  • Pronti, Andrea

Abstract

Efficient water management in agricultural activities can improve local water resource conditions while enhancing farms’ economic performance. This paper analyses how farmers’ decisions to adopt innovative and sustainable irrigation systems, such as Water Conservation and Saving Technologies (WCSTs), would shape Italian farms’ economic resilience by improving land productivity. Using a Panel Endogenous Switching Regression Model, our results confirm that the WCST adoption is an endogenous and self-selective process and land value is endogenously determined. Seasonal aridity indices are important factors in the choice of WCST adoption, with different effects on non-adopters and adopters. Farmers who adopt WCSTs are more productive than those who do not.

Suggested Citation

  • Auci, Sabrina & Pronti, Andrea, 2023. "Irrigation technology adaptation for a sustainable agriculture: A panel endogenous switching analysis on the Italian farmland productivity," Resource and Energy Economics, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:resene:v:74:y:2023:i:c:s0928765523000465
    DOI: 10.1016/j.reseneeco.2023.101391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765523000465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2023.101391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Musolino Dario & de Carli Alessandro & Massarutto Antonio, 2017. "Evaluation of socio-economic impact of drought events: the case of Po river basin," European Countryside, Sciendo, vol. 9(1), pages 163-176, March.
    3. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    4. Sha, Wenbiao & Chen, Fengbo & Mishra, Ashok K., 2019. "Adoption of direct seeded rice, land use and enterprise income: Evidence from Chinese rice producers," Land Use Policy, Elsevier, vol. 83(C), pages 564-570.
    5. Alice Baronetti & Vincent Dubreuil & Antonello Provenzale & Simona Fratianni, 2022. "Future droughts in northern Italy: high-resolution projections using EURO-CORDEX and MED-CORDEX ensembles," Climatic Change, Springer, vol. 172(3), pages 1-22, June.
    6. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    7. Zuo, Alec & Qiu, Feng & Wheeler, Sarah Ann, 2019. "Examining volatility dynamics, spillovers and government water recovery in Murray-Darling Basin water markets," Resource and Energy Economics, Elsevier, vol. 58(C).
    8. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    9. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    10. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    11. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    12. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    13. Leroux, Anke D. & Martin, Vance L. & Zheng, Hao, 2018. "Addressing water shortages by force of habit," Resource and Energy Economics, Elsevier, vol. 53(C), pages 42-61.
    14. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    15. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    16. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2016. "A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching," Journal of Econometrics, Elsevier, vol. 190(2), pages 252-266.
    17. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    18. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    19. Schuck, Eric C. & Green, Gareth P., 2002. "Supply-based water pricing in a conjunctive use system: implications for resource and energy use," Resource and Energy Economics, Elsevier, vol. 24(3), pages 175-192, June.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    21. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    22. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Is direct seeded rice a boon for economic performance? Empirical evidence from India," Food Policy, Elsevier, vol. 73(C), pages 10-18.
    23. Shrestha, Rajendra B & Gopalakrishnan, Chennat, 1993. "Adoption and Diffusion of Drip Irrigation Technology: An Econometric Analysis," Economic Development and Cultural Change, University of Chicago Press, vol. 41(2), pages 407-418, January.
    24. Zeweld, Woldegebrial & Van Huylenbroeck, Guido & Tesfay, Girmay & Azadi, Hossein & Speelman, Stijn, 2020. "Sustainable agricultural practices, environmental risk mitigation and livelihood improvements: Empirical evidence from Northern Ethiopia," Land Use Policy, Elsevier, vol. 95(C).
    25. Suter, Jordan F. & Rouhi Rad, Mani & Manning, Dale T. & Goemans, Chris & Sanderson, Matthew R., 2021. "Depletion, climate, and the incremental value of groundwater," Resource and Energy Economics, Elsevier, vol. 63(C).
    26. Salvatore Di Falco & Marcella Veronesi, 2013. "How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia," Land Economics, University of Wisconsin Press, vol. 89(4), pages 743-766.
    27. Gao, Yang & Niu, Ziheng & Yang, Haoran & Yu, Lili, 2019. "Impact of green control techniques on family farms' welfare," Ecological Economics, Elsevier, vol. 161(C), pages 91-99.
    28. Menale Kassie & Paswel Marenya & Yohannis Tessema & Moti Jaleta & Di Zeng & Olaf Erenstein & Dil Rahut, 2018. "Measuring Farm and Market Level Economic Impacts of Improved Maize Production Technologies in Ethiopia: Evidence from Panel Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(1), pages 76-95, February.
    29. Georgina Moreno & David L. Sunding, 2005. "Joint Estimation of Technology Adoption and Land Allocation with Implications for the Design of Conservation Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1009-1019.
    30. Gershon Feder, 1982. "Adoption of Interrelated Agricultural Innovations: Complementarity and the Impacts of Risk, Scale, and Credit," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 94-101.
    31. Paul Stoneman, 2013. "The impact of prior use on the further diffusion of new process technology," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(3), pages 238-255, April.
    32. da Cunha, Dênis Antônio & Coelho, Alexandre Bragança & Féres, José Gustavo, 2015. "Irrigation as an adaptive strategy to climate change: an economic perspective on Brazilian agriculture," Environment and Development Economics, Cambridge University Press, vol. 20(1), pages 57-79, February.
    33. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    34. Donkor, Emmanuel & Onakuse, Stephen & Bogue, Joe & De Los Rios-Carmenado, Ignacio, 2019. "Fertiliser adoption and sustainable rural livelihood improvement in Nigeria," Land Use Policy, Elsevier, vol. 88(C).
    35. Doris Läpple & Fiona Thorne, 2019. "The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 178-197, February.
    36. Vella, Francis & Verbeek, Marno, 1999. "Two-step estimation of panel data models with censored endogenous variables and selection bias," Journal of Econometrics, Elsevier, vol. 90(2), pages 239-263, June.
    37. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    38. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    39. Simtowe, Franklin & Amondo, Emily & Marenya, Paswel & Rahut, Dil & Sonder, Kai & Erenstein, Olaf, 2019. "Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda," Land Use Policy, Elsevier, vol. 88(C).
    40. Elbakidze, Levan & Fa’anunu, Benjamin & Mamula, Aaron & Taylor, R. Garth, 2017. "Evaluating economic efficiency of a water buyback program: The Klamath irrigation project," Resource and Energy Economics, Elsevier, vol. 48(C), pages 68-82.
    41. Huang, Qiuqiong & Xu, Ying & Kovacs, Kent & West, Grant, 2017. "Analysis Of Factors That Influence The Use Of Irrigation Technologies And Water Management Practices In Arkansas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 49(2), pages 159-185, May.
    42. Chrysovalantis Karafillis & Evaggelos Papanagiotou, 2011. "Innovation and total factor productivity in organic farming," Applied Economics, Taylor & Francis Journals, vol. 43(23), pages 3075-3087.
    43. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    44. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    45. Alfonso Expósito & Julio Berbel, 2019. "Drivers of Irrigation Water Productivity and Basin Closure Process: Analysis of the Guadalquivir River Basin (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1439-1450, March.
    46. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    47. Keith O. Fuglie & Darrell J. Bosch, 1995. "Economic and Environmental Implications of Soil Nitrogen Testing: A Switching-Regression Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 891-900.
    48. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Auci & Andrea Pronti, 2020. "Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity," SEEDS Working Papers 1220, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2020.
    2. Federico Antonioli & Simone Severini & Mauro Vigani, 2023. "Visa for competitiveness: foreign workforce and Italian dairy farms’ performance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(1), pages 115-150.
    3. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    4. Ojo, Temitope O. & Baiyegunhi, Lloyd J.S & Adetoro, Adetoso A. & Ogundeji, Abiodun A., 2021. "Adoption of Soil and Water Conservation Technology and Its Impact on the Productivity of Smallholder Rice Farmers in Southwest, Nigeria," 2021 Conference, August 17-31, 2021, Virtual 314981, International Association of Agricultural Economists.
    5. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    6. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    7. Manda, Julius & Tufa, Adane & Alene, Arega & Swai, Elirehema & Muthoni, Francis & Hoeschle-Zeledon, Irmgard & Mateete, Bekunda, 2021. "The Average and Distributional Impacts of Soil and Water Conservation Technologies on the Welfare of Smallholder Farmers in Tanzania," 2021 Conference, August 17-31, 2021, Virtual 314992, International Association of Agricultural Economists.
    8. Maren Radeny & Elizaphan J. O. Rao & Maurice Juma Ogada & John W. Recha & Dawit Solomon, 2022. "Impacts of climate-smart crop varieties and livestock breeds on the food security of smallholder farmers in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1511-1535, December.
    9. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    10. Manda, Julius & Alene, Arega D. & Tufa, Adane H. & Abdoulaye, Tahirou & Wossen, Tesfamicheal & Chikoye, David & Manyong, Victor, 2019. "The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis," World Development, Elsevier, vol. 122(C), pages 261-271.
    11. Gideon Danso-Abbeam & Lloyd J. S. Baiyegunhi & Mark D. Laing & Hussein Shimelis, 2022. "Productivity and Welfare Impacts of Dual-Purpose Sweetpotato Varieties’ Adoption Among Smallholder Farmers in Rwanda," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(2), pages 1097-1117, April.
    12. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    13. Krisha Lim & Bruno Wichmann & Martin K. Luckert & Peter Läderach, 2020. "Impacts of smallholder agricultural adaptation on food security: evidence from Africa, Asia, and Central America," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 21-35, February.
    14. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    15. Hambulo Ngoma, 2018. "Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 381-396, April.
    16. Ainembabazi, John Herbert & Abdoulaye, Tahirou & Feleke, Shiferaw & Alene, Arega & Dontsop-Nguezet, Paul M. & Ndayisaba, Pierre Celestin & Hicintuka, Cyrille & Mapatano, Sylvain & Manyong, Victor, 2018. "Who benefits from which agricultural research-for-development technologies? Evidence from farm household poverty analysis in Central Africa," World Development, Elsevier, vol. 108(C), pages 28-46.
    17. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    18. Goundan, Anatole & Faye, Amy & Henning, Christian H. C. A. & Collins-Sowah, Peron A., 2020. "Investing in risky inputs in Senegal: Implications for farm profit and food production," Working Papers of Agricultural Policy WP2020-07, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    19. Parvathi, Priyanka & Waibel, Hermann, 2016. "Organic Agriculture and Fair Trade: A Happy Marriage? A Case Study of Certified Smallholder Black Pepper Farmers in India," World Development, Elsevier, vol. 77(C), pages 206-220.
    20. Mao, Hui & Zhou, Li & Ying, RuiYao & Pan, Dan, 2021. "Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China," Land Use Policy, Elsevier, vol. 109(C).

    More about this item

    Keywords

    Water scarcity; Adaptation strategy; WCSTs adoption; Sustainable water use and agriculture; Italian farms; Panel endogenous switching regression model;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:74:y:2023:i:c:s0928765523000465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.