IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp825-838.html
   My bibliography  Save this article

Dynamic asymmetric spillovers and volatility interdependence on China’s stock market

Author

Listed:
  • Chen, Yufeng
  • Li, Wenqi
  • Qu, Fang

Abstract

In this paper, we developed a novel measure to quantify the asymmetries in volatility spillovers, which emerge due to negative and positive shocks. Using high-frequency data of ten CSI 300 sector indices from 2007 to 2016, we employ our method to analyze the asymmetries in volatility spillover and volatility interdependence on China’s stock market at the sector level. We find that in general, the spillover from bad volatilities, which due to negative movements in returns, is considerably stronger than that from good volatilities due to positive returns. Except when the State Council of China announced the 4 trillion stimulus program in November 2008 and raised the total maximum QFII quota by $50 billion to $80 billion in April 2012, during which the good volatility dominated. Moreover, our empirical results reveal the asymmetric spillovers transmission mechanism. By decomposing the overall shock into macroeconomic shocks that affect all sectors and industrial shocks that only affect the specific sector, we found that rather than industrial shocks, the macroeconomic shocks dominate the asymmetries in spillover transmission.

Suggested Citation

  • Chen, Yufeng & Li, Wenqi & Qu, Fang, 2019. "Dynamic asymmetric spillovers and volatility interdependence on China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 825-838.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:825-838
    DOI: 10.1016/j.physa.2019.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301748
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jozef Baruník, Evzen Kocenda and Lukáa Vácha, 2015. "Volatility Spillovers Across Petroleum Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    4. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    5. FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    6. Restrepo, Natalia & Uribe, Jorge M. & Manotas, Diego, 2018. "Financial risk network architecture of energy firms," Applied Energy, Elsevier, vol. 215(C), pages 630-642.
    7. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2015. "Identifying the multiscale impacts of crude oil price shocks on the stock market in China at the sector level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 13-24.
    8. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Hoon Kang, Sang, 2017. "Time-varying volatility spillovers between stock and precious metal markets with portfolio implications," Resources Policy, Elsevier, vol. 53(C), pages 88-102.
    9. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    10. Yufeng Chen & Wenqi Li & Xi Jin, 2018. "Volatility Spillovers between Crude Oil Prices and New Energy Stock Price in China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 43-62, December.
    11. Lu Fang & David A. Bessler, 2018. "Is it China that leads the Asian stock market contagion in 2015?," Applied Economics Letters, Taylor & Francis Journals, vol. 25(11), pages 752-757, June.
    12. Yang, Liansheng & Zhu, Yingming & Wang, Yudong & Wang, Yiqi, 2016. "Multifractal detrended cross-correlations between crude oil market and Chinese ten sector stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 255-265.
    13. Bouri, Elie & Roubaud, David & Jammazi, Rania & Assaf, Ata, 2017. "Uncovering frequency domain causality between gold and the stock markets of China and India: Evidence from implied volatility indices," Finance Research Letters, Elsevier, vol. 23(C), pages 23-30.
    14. Sudharshan Reddy Paramati & Abdulrasheed Zakari & Mallaiah Jalle & Seenaiah Kale & Prasad Begari, 2018. "The dynamic impact of bilateral trade linkages on stock market correlations of Australia and China," Applied Economics Letters, Taylor & Francis Journals, vol. 25(3), pages 141-145, February.
    15. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    16. Bouri, Elie & Chen, Qian & Lien, Donald & Lv, Xin, 2017. "Causality between oil prices and the stock market in China: The relevance of the reformed oil product pricing mechanism," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 34-48.
    17. Ji, Qiang & Bouri, Elie & Roubaud, David, 2018. "Dynamic network of implied volatility transmission among US equities, strategic commodities, and BRICS equities," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 1-12.
    18. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    19. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    20. El Hedi Arouri, Mohamed & Lahiani, Amine & Nguyen, Duc Khuong, 2015. "World gold prices and stock returns in China: Insights for hedging and diversification strategies," Economic Modelling, Elsevier, vol. 44(C), pages 273-282.
    21. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    22. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    23. Hao, Jing & He, Feng, 2018. "Univariate dependence among sectors in Chinese stock market and systemic risk implication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 355-364.
    24. Mobarek, Asma & Muradoglu, Gulnur & Mollah, Sabur & Hou, Ai Jun, 2016. "Determinants of time varying co-movements among international stock markets during crisis and non-crisis periods," Journal of Financial Stability, Elsevier, vol. 24(C), pages 1-11.
    25. Yan Zhang, 2018. "China, Japan and the US Stock Markets and the Global Financial Crisis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(1), pages 23-45, March.
    26. Chien, Mei-Se & Lee, Chien-Chiang & Hu, Te-Chung & Hu, Hui-Ting, 2015. "Dynamic Asian stock market convergence: Evidence from dynamic cointegration analysis among China and ASEAN-5," Economic Modelling, Elsevier, vol. 51(C), pages 84-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Kedong & Liu, Zhe & Jin, Xue, 2020. "Interindustry volatility spillover effects in China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:825-838. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.