IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v63y2020ics0957178719303534.html
   My bibliography  Save this article

The effect of household income on residential wastewater output: Evidence from urban China

Author

Listed:
  • Zheng, Jiajia
  • Kamal, Muhammad Abdul

Abstract

Whether and how governmental pollution regulations change pollution production behaviors remain uncertain. Based on the STIRPAT model, this paper confirms that from 2005 to 2015, the Chinese government's wastewater treatment service strengthened the positive relationship between income and wastewater output, that is, more wastewater treatment service led to more wastewater output. Thus, the current system for wastewater treatment fees must be redesigned so that residents can compensate for the cost of wastewater service. Additionally, the installation of smart water meters and awareness campaigns regarding water-saving and recycling are also helpful for urban wastewater management.

Suggested Citation

  • Zheng, Jiajia & Kamal, Muhammad Abdul, 2020. "The effect of household income on residential wastewater output: Evidence from urban China," Utilities Policy, Elsevier, vol. 63(C).
  • Handle: RePEc:eee:juipol:v:63:y:2020:i:c:s0957178719303534
    DOI: 10.1016/j.jup.2019.101000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178719303534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2019.101000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    2. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Maurice J. G. Bun & Teresa D. Harrison, 2019. "OLS and IV estimation of regression models including endogenous interaction terms," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 814-827, August.
    5. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    6. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    7. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    8. Li Jiang & Feng Wu & Yu Liu & Xiangzheng Deng, 2014. "Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis," Sustainability, MDPI, vol. 6(11), pages 1-15, October.
    9. Si, Shuyang & Lyu, Mingjie & Lin Lawell, C.-Y. Cynthia & Chen, Song, 2018. "The effects of energy-related policies on energy consumption in China," Energy Economics, Elsevier, vol. 76(C), pages 202-227.
    10. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    11. Barro, Robert J. & Lee, Jong Wha, 2013. "A new data set of educational attainment in the world, 1950–2010," Journal of Development Economics, Elsevier, vol. 104(C), pages 184-198.
    12. Giovanis, Eleftherios, 2013. "Environmental Kuznets curve: Evidence from the British Household Panel Survey," Economic Modelling, Elsevier, vol. 30(C), pages 602-611.
    13. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    14. Hatice Ozer Balli & Bent Sørensen, 2013. "Interaction effects in econometrics," Empirical Economics, Springer, vol. 45(1), pages 583-603, August.
    15. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    16. Orubu, Christopher O. & Omotor, Douglason G., 2011. "Environmental quality and economic growth: Searching for environmental Kuznets curves for air and water pollutants in Africa," Energy Policy, Elsevier, vol. 39(7), pages 4178-4188, July.
    17. Steven Renzetti, 1999. "Municipal Water Supply and Sewage Treatment: Costs, Prices and Distortions," Canadian Journal of Economics, Canadian Economics Association, vol. 32(3), pages 688-704, May.
    18. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    19. Beecher, Janice & Gould, Tom, 2018. "Pricing wastewater to save water: Are theory and practice transferable?," Utilities Policy, Elsevier, vol. 52(C), pages 81-87.
    20. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    21. Fosten, Jack & Morley, Bruce & Taylor, Tim, 2012. "Dynamic misspecification in the environmental Kuznets curve: Evidence from CO2 and SO2 emissions in the United Kingdom," Ecological Economics, Elsevier, vol. 76(C), pages 25-33.
    22. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    23. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    24. Jiajia Zheng & Pengfei Sheng, 2017. "The Impact of Foreign Direct Investment (FDI) on the Environment: Market Perspectives and Evidence from China," Economies, MDPI, vol. 5(1), pages 1-15, March.
    25. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    26. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    27. Chen, Shiyi & Jin, Hao & Lu, Yulin, 2019. "Impact of urbanization on CO2 emissions and energy consumption structure: A panel data analysis for Chinese prefecture-level cities," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 107-119.
    28. Jing He & Xikang Chen & Yong Shi & Aihua Li, 2007. "Dynamic Computable General Equilibrium Model and Sensitivity Analysis for Shadow Price of Water Resource in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1517-1533, September.
    29. Panayotou T., 1993. "Empirical tests and policy analysis of environmental degradation at different stages of economic development," ILO Working Papers 992927783402676, International Labour Organization.
    30. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    31. Maamar Sebri, 2014. "A meta-analysis of residential water demand studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 499-520, June.
    32. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    33. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    34. David R. Bell & Ronald C. Griffin, 2011. "Urban Water Demand with Periodic Error Correction," Land Economics, University of Wisconsin Press, vol. 87(3), pages 528-544.
    35. Zhao, Jing & Ni, Hongzhen & Peng, Xiujian & Li, Jifeng & Chen, Genfa & Liu, Jinhua, 2016. "Impact of water price reform on water conservation and economic growth in China," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 90-103.
    36. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    37. Kander, Astrid & Lindmark, Magnus, 2004. "Energy consumption, pollutant emissions and growth in the long run: Sweden through 200 years," European Review of Economic History, Cambridge University Press, vol. 8(3), pages 297-335, December.
    38. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai, Tao & Zhang, Guangnan & Kumar Singh, Pradeep & Altameem, Torki & El-Shafai, Walid, 2023. "Unleashing wastewater heat Recovery's potential in smart building systems: Grey wolf-assisted optimization aided by artificial neural networks," Energy, Elsevier, vol. 285(C).
    2. Wang, Chen & Chu, Zhongzhu & Gu, Wei, 2021. "Assessing the role of public attention in China's wastewater treatment: A spatial perspective," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    3. Jian Chang & Wanhua Li & Yaodong Zhou & Peng Zhang & Hengxin Zhang, 2022. "Impact of Public Service Quality on the Efficiency of the Water Industry: Evidence from 147 Cities in China," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    4. Jiajia Zheng & Muhammad Abdul Kamal & Assad Ullah, 2020. "The direct and indirect effects of China's wastewater treatment service on urban household wastewater discharge," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1380-1400, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Zheng & Muhammad Abdul Kamal & Assad Ullah, 2020. "The direct and indirect effects of China's wastewater treatment service on urban household wastewater discharge," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1380-1400, September.
    2. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
    3. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    4. Sinha, Avik & Rastogi, Siddhartha K., 2017. "Collaboration between Central and State Government and Environmental Quality: Evidences from Indian Cities," MPRA Paper 100012, University Library of Munich, Germany.
    5. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    6. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    7. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    8. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    9. Churchill, Sefa Awaworyi & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2018. "The Environmental Kuznets Curve in the OECD: 1870–2014," Energy Economics, Elsevier, vol. 75(C), pages 389-399.
    10. Carson, Richard T, 2009. "Searching for Empirical Regularity and Theoretical Structure: The Environmental Kuznets Curve," University of California at San Diego, Economics Working Paper Series qt4m6263c2, Department of Economics, UC San Diego.
    11. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    12. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    13. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    14. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    15. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    16. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    17. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    18. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    19. Maralgua Och, 2017. "Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 117-128.
    20. Mehmet Demiral & Emrah Eray Akça & Ipek Tekin, 2021. "Predictors of global carbon dioxide emissions: Do stringent environmental policies matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18337-18361, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:63:y:2020:i:c:s0957178719303534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.