IDEAS home Printed from
   My bibliography  Save this article

The use of alternative preference elicitation methods in complex discrete choice experiments


  • Yoo, Hong Il
  • Doiron, Denise


We analyse stated preference data over nursing jobs collected from two different discrete choice experiments: a multi-profile case best-worst scaling experiment (BWS) prompting selection of the best and worst among alternative jobs, and a profile case BWS wherein the respondents choose the best and worst job attributes. The latter allows identification of additional utility parameters and is believed to be cognitively easier. Results suggest that respondents place greater value on pecuniary over non-pecuniary gains in the multi-profile case. There is little evidence that this discrepancy is induced by the extra cognitive burden of processing several profiles at once in the multi-profile case. We offer thoughts on other likely mechanisms.

Suggested Citation

  • Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
  • Handle: RePEc:eee:jhecon:v:32:y:2013:i:6:p:1166-1179
    DOI: 10.1016/j.jhealeco.2013.09.009

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Patricia Kenny & Denise Doiron & Jane Hall & Deborah J Street & Kathleen Milton-Wildey & Glenda Parmenter, 2012. "The training and job decisions of nurses: the first year of a longitudinal study investigating nurse recruitment and retention. CHERE Working Paper 2012/02," Working Papers 2012/02, CHERE, University of Technology, Sydney.
    2. Jayson L. Lusk & Brian C. Briggeman, 2009. "Food Values," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 184-196.
    3. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    4. Hole, Arne Risa, 2011. "A discrete choice model with endogenous attribute attendance," Economics Letters, Elsevier, vol. 110(3), pages 203-205, March.
    5. Dennis Fok & Richard Paap & Bram Van Dijk, 2012. "A Rank‐Ordered Logit Model With Unobserved Heterogeneity In Ranking Capabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 831-846, August.
    6. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    7. John Calfee & Clifford Winston & Randolph Stempski, 2001. "Econometric Issues In Estimating Consumer Preferences From Stated Preference Data: A Case Study Of The Value Of Automobile Travel Time," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 699-707, November.
    8. Esther W. de Bekker‐Grob & Mandy Ryan & Karen Gerard, 2012. "Discrete choice experiments in health economics: a review of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 145-172, February.
    9. Mandy Ryan & Verity Watson, 2009. "Comparing welfare estimates from payment card contingent valuation and discrete choice experiments," Health Economics, John Wiley & Sons, Ltd., vol. 18(4), pages 389-401.
    10. Daniel Kahneman, 2003. "A Psychological Perspective on Economics," American Economic Review, American Economic Association, vol. 93(2), pages 162-168, May.
    11. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    12. Lusk, Jayson L. & Parker, Natalie, 2009. "Consumer Preferences for Amount and Type of Fat in Ground Beef," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(01), pages 75-90, April.
    13. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    14. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, March.
    15. David Hensher & William Greene, 2010. "Non-attendance and dual processing of common-metric attributes in choice analysis: a latent class specification," Empirical Economics, Springer, vol. 39(2), pages 413-426, October.
    16. Marti, Joachim, 2012. "A best–worst scaling survey of adolescents' level of concern for health and non-health consequences of smoking," Social Science & Medicine, Elsevier, vol. 75(1), pages 87-97.
    17. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    18. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    19. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    20. N. Flynn, Terry & J. Peters, Tim & Coast, Joanna, 2013. "Quantifying response shift or adaptation effects in quality of life by synthesising best-worst scaling and discrete choice data," Journal of choice modelling, Elsevier, vol. 6(C), pages 34-43.
    21. Mylene Lagarde, 2013. "Investigating Attribute Non‐Attendance And Its Consequences In Choice Experiments With Latent Class Models," Health Economics, John Wiley & Sons, Ltd., vol. 22(5), pages 554-567, May.
    22. Keith M. Marzilli Ericson & Andreas Fuster, 2011. "Expectations as Endowments: Evidence on Reference-Dependent Preferences from Exchange and Valuation Experiments," The Quarterly Journal of Economics, Oxford University Press, vol. 126(4), pages 1879-1907.
    23. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    24. Stirling Bryan & Lisa Gold & Rob Sheldon & Martin Buxton, 2000. "Preference measurement using conjoint methods: an empirical investigation of reliability," Health Economics, John Wiley & Sons, Ltd., vol. 9(5), pages 385-395.
    25. Denise Doiron & Jane Hall & Patricia Kenny & Deborah J. Street, 2014. "Job preferences of students and new graduates in nursing," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 924-939, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:kap:enreec:v:68:y:2017:i:4:d:10.1007_s10640-016-0058-7 is not listed on IDEAS
    2. Hong il Yoo, 2012. "The perceived unreliability of rank-ordered data: an econometric origin and implications," Discussion Papers 2012-46, School of Economics, The University of New South Wales.
    3. Pedersen, Line Bjørnskov & Hess, Stephane & Kjær, Trine, 2016. "Asymmetric information and user orientation in general practice: Exploring the agency relationship in a best–worst scaling study," Journal of Health Economics, Elsevier, vol. 50(C), pages 115-130.
    4. Jin Yan & Hong Il Yoo, 2017. "Semiparametric Estimation of the Random Utility Model with Rank-Ordered Choice Data," Working Papers 2017_02, Durham University Business School.
    5. John Buckell & Joachim Marti & Jody L. Sindelar, 2017. "Should Flavors be Banned in E-cigarettes? Evidence on Adult Smokers and Recent Quitters from a Discrete Choice Experiment," NBER Working Papers 23865, National Bureau of Economic Research, Inc.

    More about this item


    Discrete choice experiment; Preference elicitation; Rank-ordered data; Latent class logit; Best-worst scaling; Maximum-difference model;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • J44 - Labor and Demographic Economics - - Particular Labor Markets - - - Professional Labor Markets and Occupations


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jhecon:v:32:y:2013:i:6:p:1166-1179. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.