IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v26y2017i12pe1-e16.html
   My bibliography  Save this article

Is Best–Worst Scaling Suitable for Health State Valuation? A Comparison with Discrete Choice Experiments

Author

Listed:
  • Nicolas Krucien
  • Verity Watson
  • Mandy Ryan

Abstract

Health utility indices (HUIs) are widely used in economic evaluation. The best–worst scaling (BWS) method is being used to value dimensions of HUIs. However, little is known about the properties of this method. This paper investigates the validity of the BWS method to develop HUI, comparing it to another ordinal valuation method, the discrete choice experiment (DCE). Using a parametric approach, we find a low level of concordance between the two methods, with evidence of preference reversals. BWS responses are subject to decision biases, with significant effects on individuals' preferences. Non parametric tests indicate that BWS data has lower stability, monotonicity and continuity compared to DCE data, suggesting that the BWS provides lower quality data. As a consequence, for both theoretical and technical reasons, practitioners should be cautious both about using the BWS method to measure health‐related preferences, and using HUI based on BWS data. Given existing evidence, it seems that the DCE method is a better method, at least because its limitations (and measurement properties) have been extensively researched. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Nicolas Krucien & Verity Watson & Mandy Ryan, 2017. "Is Best–Worst Scaling Suitable for Health State Valuation? A Comparison with Discrete Choice Experiments," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1-16, December.
  • Handle: RePEc:wly:hlthec:v:26:y:2017:i:12:p:e1-e16
    DOI: 10.1002/hec.3459
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.3459
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.3459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lancsar, Emily & Louviere, Jordan & Donaldson, Cam & Currie, Gillian & Burgess, Leonie, 2013. "Best worst discrete choice experiments in health: Methods and an application," Social Science & Medicine, Elsevier, vol. 76(C), pages 74-82.
    2. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    3. San Miguel, Fernando & Ryan, Mandy & Scott, Anthony, 2002. "Are preferences stable? The case of health care," Journal of Economic Behavior & Organization, Elsevier, vol. 48(1), pages 1-14, May.
    4. Mandy Ryan & Karen Gerard & Gillian Currie, 2012. "Using Discrete Choice Experiments in Health Economics," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 41, Edward Elgar Publishing.
    5. Terry N. Flynn & Elisabeth Huynh & Tim J. Peters & Hareth Al‐Janabi & Sam Clemens & Alison Moody & Joanna Coast, 2015. "Scoring the Icecap‐a Capability Instrument. Estimation of a UK General Population Tariff," Health Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 258-269, March.
    6. Esther W. de Bekker‐Grob & Mandy Ryan & Karen Gerard, 2012. "Discrete choice experiments in health economics: a review of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 145-172, February.
    7. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    8. Fernando San Miguel & Mandy Ryan & Mabelle Amaya‐Amaya, 2005. "‘Irrational’ stated preferences: a quantitative and qualitative investigation," Health Economics, John Wiley & Sons, Ltd., vol. 14(3), pages 307-322, March.
    9. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    10. Mooney, Gavin, 2009. "Challenging Health Economics," OUP Catalogue, Oxford University Press, number 9780199235971.
    11. Stirling Bryan & Paul Dolan, 2004. "Discrete choice experiments in health economics," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 5(3), pages 199-202, September.
    12. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    13. McIntosh, E. & Ryan, M., 2002. "Using discrete choice experiments to derive welfare estimates for the provision of elective surgery: Implications of discontinuous preferences," Journal of Economic Psychology, Elsevier, vol. 23(3), pages 367-382, June.
    14. Richard Norman & Paula Cronin & Rosalie Viney, 2013. "A Pilot Discrete Choice Experiment to Explore Preferences for EQ-5D-5L Health States," Applied Health Economics and Health Policy, Springer, vol. 11(3), pages 287-298, June.
    15. Mandy Ryan & Fernando San Miguel, 2003. "Revisiting the axiom of completeness in health care," Health Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 295-307, April.
    16. Mickael Bech & Trine Kjaer & Jørgen Lauridsen, 2011. "Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment," Health Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 273-286, March.
    17. Rosalie Viney & Richard Norman & John Brazier & Paula Cronin & Madeleine T. King & Julie Ratcliffe & Deborah Street, 2014. "An Australian Discrete Choice Experiment To Value Eq‐5d Health States," Health Economics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-742, June.
    18. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    19. Ryan, Mandy & Netten, Ann & Skatun, Diane & Smith, Paul, 2006. "Using discrete choice experiments to estimate a preference-based measure of outcome--An application to social care for older people," Journal of Health Economics, Elsevier, vol. 25(5), pages 927-944, September.
    20. N. Flynn, Terry & J. Peters, Tim & Coast, Joanna, 2013. "Quantifying response shift or adaptation effects in quality of life by synthesising best-worst scaling and discrete choice data," Journal of choice modelling, Elsevier, vol. 6(C), pages 34-43.
    21. Trine Kjær & Mickael Bech & Dorte Gyrd‐Hansen & Kristian Hart‐Hansen, 2006. "Ordering effect and price sensitivity in discrete choice experiments: need we worry?," Health Economics, John Wiley & Sons, Ltd., vol. 15(11), pages 1217-1228, November.
    22. Stirling Bryan & Lisa Gold & Rob Sheldon & Martin Buxton, 2000. "Preference measurement using conjoint methods: an empirical investigation of reliability," Health Economics, John Wiley & Sons, Ltd., vol. 9(5), pages 385-395, July.
    23. Mandy Ryan & Angela Bate, 2001. "Testing the assumptions of rationality, continuity and symmetry when applying discrete choice experiments in health care," Applied Economics Letters, Taylor & Francis Journals, vol. 8(1), pages 59-63.
    24. Scott, Anthony, 2002. "Identifying and analysing dominant preferences in discrete choice experiments: An application in health care," Journal of Economic Psychology, Elsevier, vol. 23(3), pages 383-398, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Sever & Miroslav Verbič & Eva Klaric Sever, 2020. "Estimating Attribute-Specific Willingness-to-Pay Values from a Health Care Contingent Valuation Study: A Best–Worst Choice Approach," Applied Health Economics and Health Policy, Springer, vol. 18(1), pages 97-107, February.
    2. Brendan Mulhern & Richard Norman & Deborah J. Street & Rosalie Viney, 2019. "One Method, Many Methodological Choices: A Structured Review of Discrete-Choice Experiments for Health State Valuation," PharmacoEconomics, Springer, vol. 37(1), pages 29-43, January.
    3. Kim Dalziel & Max Catchpool & Borja García-Lorenzo & Inigo Gorostiza & Richard Norman & Oliver Rivero-Arias, 2020. "Feasibility, Validity and Differences in Adolescent and Adult EQ-5D-Y Health State Valuation in Australia and Spain: An Application of Best–Worst Scaling," PharmacoEconomics, Springer, vol. 38(5), pages 499-513, May.
    4. Aizaki, Hideo & Fogarty, James, 2019. "An R package and tutorial for case 2 best–worst scaling," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Mengoni & Chiara Seghieri & Sabina Nuti, 2013. "The application of discrete choice experiments in health economics: a systematic review of the literature," Working Papers 201301, Scuola Superiore Sant'Anna of Pisa, Istituto di Management.
    2. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    3. Denise Doiron & Hong Il Yoo, 2020. "Stated preferences over job characteristics: A panel study," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 43-82, February.
    4. Emily Lancsar & Peter Burge, 2014. "Choice modelling research in health economics," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 28, pages 675-687, Edward Elgar Publishing.
    5. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    7. Emily Lancsar & Jordan Louviere, 2008. "Conducting Discrete Choice Experiments to Inform Healthcare Decision Making," PharmacoEconomics, Springer, vol. 26(8), pages 661-677, August.
    8. Mesfin G. Genie & Nicolas Krucien & Mandy Ryan, 2021. "Weighting or aggregating? Investigating information processing in multi‐attribute choices," Health Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 1291-1305, June.
    9. Nicolas Krucien & Amiram Gafni & Nathalie Pelletier‐Fleury, 2015. "Empirical Testing of the External Validity of a Discrete Choice Experiment to Determine Preferred Treatment Option: The Case of Sleep Apnea," Health Economics, John Wiley & Sons, Ltd., vol. 24(8), pages 951-965, August.
    10. Semra Özdemir & Ateesha F. Mohamed & F. Reed Johnson & A. Brett Hauber, 2010. "Who pays attention in stated‐choice surveys?," Health Economics, John Wiley & Sons, Ltd., vol. 19(1), pages 111-118, January.
    11. Krucien, Nicolas & Ryan, Mandy & Hermens, Frouke, 2017. "Visual attention in multi-attributes choices: What can eye-tracking tell us?," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 251-267.
    12. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    13. Arne Risa Hole & Richard Norman & Rosalie Viney, 2016. "Response Patterns in Health State Valuation Using Endogenous Attribute Attendance and Latent Class Analysis," Health Economics, John Wiley & Sons, Ltd., vol. 25(2), pages 212-224, February.
    14. Bansback, Nick & Hole, Arne Risa & Mulhern, Brendan & Tsuchiya, Aki, 2014. "Testing a discrete choice experiment including duration to value health states for large descriptive systems: Addressing design and sampling issues," Social Science & Medicine, Elsevier, vol. 114(C), pages 38-48.
    15. Axel Mühlbacher & Uwe Junker & Christin Juhnke & Edgar Stemmler & Thomas Kohlmann & Friedhelm Leverkus & Matthias Nübling, 2015. "Chronic pain patients’ treatment preferences: a discrete-choice experiment," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(6), pages 613-628, July.
    16. Caroline Vass & Dan Rigby & Katherine Payne, 2017. "The Role of Qualitative Research Methods in Discrete Choice Experiments," Medical Decision Making, , vol. 37(3), pages 298-313, April.
    17. Nicolas Krucien & Jonathan Sicsic & Mandy Ryan, 2019. "For better or worse? Investigating the validity of best–worst discrete choice experiments in health," Health Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 572-586, April.
    18. Jennifer A Whitty & Ruth Walker & Xanthe Golenko & Julie Ratcliffe, 2014. "A Think Aloud Study Comparing the Validity and Acceptability of Discrete Choice and Best Worst Scaling Methods," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    19. Harris, Paul & Whitty, Jennifer A. & Kendall, Elizabeth & Ratcliffe, Julie & Wilson, Andrew & Littlejohns, Peter & Scuffham, Paul A., 2018. "The importance of population differences: Influence of individual characteristics on the Australian public’s preferences for emergency care," Health Policy, Elsevier, vol. 122(2), pages 115-125.
    20. Genie, Mesfin G. & Ryan, Mandy & Krucien, Nicolas, 2021. "To pay or not to pay? Cost information processing in the valuation of publicly funded healthcare," Social Science & Medicine, Elsevier, vol. 276(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:26:y:2017:i:12:p:e1-e16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.