IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v41y2021ics1755534521000580.html
   My bibliography  Save this article

Case 2 best-worst scaling: For good or for bad but not for both

Author

Listed:
  • Soekhai, V.
  • Donkers, B.
  • Levitan, B.
  • de Bekker-Grob, E.W.

Abstract

This paper studies the performance of case 2 best-worst scaling (BWS) when it is applied to a mix of positive and negative attributes, for example in studying treatments characterized by both benefits and harms. Intuitively, such a mix of positive and negative attributes leads to dominance. We analytically show that dominance leads to infinitely large differences between the parameter estimates for the positive versus negative attributes. The results from a simulation study confirm our analytical results: parameter values of the attributes could not be accurately recovered. When only a single positive attribute was used, even the relative ordering of the attribute level preferences was not identified. As a result, case 2 BWS can be used to elicit preferences if only good (positive) or only bad (negative) attributes are included in the choice tasks, but not for both since dominance will impact parameter estimation and therefore decision-making.

Suggested Citation

  • Soekhai, V. & Donkers, B. & Levitan, B. & de Bekker-Grob, E.W., 2021. "Case 2 best-worst scaling: For good or for bad but not for both," Journal of choice modelling, Elsevier, vol. 41(C).
  • Handle: RePEc:eee:eejocm:v:41:y:2021:i:c:s1755534521000580
    DOI: 10.1016/j.jocm.2021.100325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534521000580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2021.100325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    2. Bliemer, Michiel C.J. & Rose, John M. & Chorus, Caspar G., 2017. "Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 83-104.
    3. Levin, Irwin P & Gaeth, Gary J, 1988. "How Consumers Are Affected by the Framing of Attribute Information before and after Consuming the Product," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 15(3), pages 374-378, December.
    4. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    5. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
    7. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    8. Jennifer A. Whitty & Julie Ratcliffe & Gang Chen & Paul A. Scuffham, 2014. "Australian Public Preferences for the Funding of New Health Technologies," Medical Decision Making, , vol. 34(5), pages 638-654, July.
    9. Axel C. Mühlbacher & Peter Zweifel & Anika Kaczynski & F. Reed Johnson, 2016. "Experimental measurement of preferences in health care using best-worst scaling (BWS): theoretical and statistical issues," Health Economics Review, Springer, vol. 6(1), pages 1-12, December.
    10. Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
    11. Huber, Joel & Payne, John W & Puto, Christopher, 1982. "Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(1), pages 90-98, June.
    12. Nicolas Krucien & Verity Watson & Mandy Ryan, 2017. "Is Best–Worst Scaling Suitable for Health State Valuation? A Comparison with Discrete Choice Experiments," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1-16, December.
    13. Axel C. Mühlbacher & Anika Kaczynski & Peter Zweifel & F. Reed Johnson, 2016. "Experimental measurement of preferences in health and healthcare using best-worst scaling: an overview," Health Economics Review, Springer, vol. 6(1), pages 1-14, December.
    14. T.N. Flynn & A.A.J. Marley, 2014. "Best-worst scaling: theory and methods," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 8, pages 178-201, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Haotian & Zhang, Tong & Lambert, Dayton M. & Feuz, Ryan, 2023. "An empirical comparison of conjoint and best-worst scaling case III methods," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatenda T Yemeke & Elizabeth E Kiracho & Aloysius Mutebi & Rebecca R Apolot & Anthony Ssebagereka & Daniel R Evans & Sachiko Ozawa, 2020. "Health versus other sectors: Multisectoral resource allocation preferences in Mukono district, Uganda," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-15, July.
    2. Aizaki, Hideo & Fogarty, James, 2019. "An R package and tutorial for case 2 best–worst scaling," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    3. Denise Doiron & Hong Il Yoo, 2020. "Stated preferences over job characteristics: A panel study," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 43-82, February.
    4. Osman, Ahmed M.Y. & Wu, Jing & He, Xiaoning & Chen, Gang, 2021. "Eliciting SF-6Dv2 health state utilities using an anchored best-worst scaling technique," Social Science & Medicine, Elsevier, vol. 279(C).
    5. Daniel R. Petrolia & Matthew G. Interis & Joonghyun Hwang, 2018. "Single-Choice, Repeated-Choice, and Best-Worst Scaling Elicitation Formats: Do Results Differ and by How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 365-393, February.
    6. Yangui, Ahmed & Akaichi, Faical & Costa-Font, Montserrat & Gil, Jose Maria, 2019. "Comparing results of ranking conjoint analyses, best–worst scaling and discrete choice experiments in a nonhypothetical context," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(2), April.
    7. Ryan Webb & Paul W. Glimcher & Kenway Louie, 2021. "The Normalization of Consumer Valuations: Context-Dependent Preferences from Neurobiological Constraints," Management Science, INFORMS, vol. 67(1), pages 93-125, January.
    8. Hajji, Assma & Trukeschitz, Birgit & Malley, Juliette & Batchelder, Laurie & Saloniki, Eirini & Linnosmaa, Ismo & Lu, Hui, 2020. "Population-based preference weights for the Adult Social Care Outcomes Toolkit (ASCOT) for service users for Austria: Findings from a best-worst experiment," Social Science & Medicine, Elsevier, vol. 250(C).
    9. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    10. Pedersen, Line Bjørnskov & Hess, Stephane & Kjær, Trine, 2016. "Asymmetric information and user orientation in general practice: Exploring the agency relationship in a best–worst scaling study," Journal of Health Economics, Elsevier, vol. 50(C), pages 115-130.
    11. Marti, Joachim, 2012. "A best–worst scaling survey of adolescents' level of concern for health and non-health consequences of smoking," Social Science & Medicine, Elsevier, vol. 75(1), pages 87-97.
    12. Rausch, Theresa Maria & Baier, Daniel & Wening, Stefanie, 2021. "Does sustainability really matter to consumers? Assessing the importance of online shop and apparel product attributes," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    13. Perolia, Daniel R. & Collart, Alba J. & Yehouenou, Lauriane, 2016. "Consumer Preferences for Delacata Catfish: A Choice Experiment with Tasting," Journal of Food Distribution Research, Food Distribution Research Society, vol. 47(3), pages 1-17, November.
    14. Lancsar, Emily & Louviere, Jordan & Donaldson, Cam & Currie, Gillian & Burgess, Leonie, 2013. "Best worst discrete choice experiments in health: Methods and an application," Social Science & Medicine, Elsevier, vol. 76(C), pages 74-82.
    15. Lien Nguyen & Hanna Jokimäki & Ismo Linnosmaa & Eirini-Christina Saloniki & Laurie Batchelder & Juliette Malley & Hui Lu & Peter Burge & Birgit Trukeschitz & Julien Forder, 2022. "Valuing informal carers’ quality of life using best-worst scaling—Finnish preference weights for the Adult Social Care Outcomes Toolkit for carers (ASCOT-Carer)," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(3), pages 357-374, April.
    16. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    17. Greiner, Romy & Bliemer, Michiel & Ballweg, Julie, 2014. "Design considerations of a choice experiment to estimate likely participation by north Australian pastoralists in contractual biodiversity conservation," Journal of choice modelling, Elsevier, vol. 10(C), pages 34-45.
    18. de Bekker-Grob, E.W. & Donkers, B. & Bliemer, M.C.J. & Veldwijk, J. & Swait, J.D., 2020. "Can healthcare choice be predicted using stated preference data?," Social Science & Medicine, Elsevier, vol. 246(C).
    19. Nicolas Krucien & Verity Watson & Mandy Ryan, 2017. "Is Best–Worst Scaling Suitable for Health State Valuation? A Comparison with Discrete Choice Experiments," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1-16, December.
    20. Petrolia, Daniel R., 2016. "Risk preferences, risk perceptions, and risky food," Food Policy, Elsevier, vol. 64(C), pages 37-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:41:y:2021:i:c:s1755534521000580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.