IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v130y2025ics0095069625000166.html
   My bibliography  Save this article

Agriculture’s nitrogen legacy

Author

Listed:
  • Metaxoglou, Konstantinos
  • Smith, Aaron

Abstract

Nitrogen pollution of waterways is a large global problem, particularly in regions with intensive cropland agriculture, such as the Mississippi River Basin. Unlike prior studies based on agronomic and hydrologic (ag-hydro) models, we collect detailed data from water quality monitors and employ panel data econometric methods to estimate the relationship between cropland and nitrogen pollution. We find an increase in nitrogen load in nearby downstream waterways associated with an additional corn acre upstream that is substantially smaller than the field-to-river adjusted loss per cropland acre based on ag-hydro models. Our findings are consistent with those of recent research documenting the accumulation of large amounts of nitrogen in subsurface soil and groundwater over several decades; this is surplus nitrogen that was applied to fields but has yet to appear in waterways. This legacy nitrogen eventually reaches streams and rivers exacerbating further nitrogen pollution leading to time lags in measurable water quality improvements following the implementation of mitigation practices and policies. In the presence of large amounts of legacy nitrogen, land retirement, and other on-farm mitigation practices, may not be cost effective. Downstream off-farm practices, such as the development of fluvial wetlands, which remove both legacy and new nitrogen, can be cost-effective.

Suggested Citation

  • Metaxoglou, Konstantinos & Smith, Aaron, 2025. "Agriculture’s nitrogen legacy," Journal of Environmental Economics and Management, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:jeeman:v:130:y:2025:i:c:s0095069625000166
    DOI: 10.1016/j.jeem.2025.103132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069625000166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2025.103132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiaochen Liu & Arthur H. W. Beusen & Hans J. M. Grinsven & Junjie Wang & Wim Joost Hoek & Xiangbin Ran & José M. Mogollón & Alexander F. Bouwman, 2024. "Impact of groundwater nitrogen legacy on water quality," Nature Sustainability, Nature, vol. 7(7), pages 891-900, July.
    2. David A. Keiser & Joseph K. Shapiro, 2018. "Consequences of the Clean Water Act and the Demand for Water Quality," Center for Agricultural and Rural Development (CARD) Publications 17-wp571, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    4. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    5. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    6. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    7. Catherine L. Kling, 2011. "Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 297-309.
    8. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    9. repec:cdl:agrebk:qt2qq4d7vn is not listed on IDEAS
    10. Claassen, Roger & Bowman, Maria & McFadden, Jonathan & Smith, David & Wallander, Steven, 2018. "Tillage Intensity and Conservation Cropping in the United States," Economic Information Bulletin 277566, United States Department of Agriculture, Economic Research Service.
    11. David A. Keiser & Catherine L. Kling & Joseph S. Shapiro, 2019. "The low but uncertain measured benefits of US water quality policy," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(12), pages 5262-5269, March.
    12. Pengfei Liu & Yu Wang & Wei Zhang, 2023. "The influence of the Environmental Quality Incentives Program on local water quality," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 27-51, January.
    13. Hsin‐Chieh Hsieh & Benjamin M. Gramig, 2024. "Estimating the impact of cover crop adoption on ambient nitrogen concentration in the upper Mississippi River drainage," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 46(2), pages 609-626, June.
    14. Ribaudo, Marc & Delgado, Jorge & Hansen, LeRoy T. & Livingston, Michael J. & Mosheim, Roberto & Williamson, James M., 2011. "Nitrogen in Agricultural Systems: Implications for Conservation Policy," Economic Research Report 118022, United States Department of Agriculture, Economic Research Service.
    15. Charles A. Taylor & Hannah Druckenmiller, 2022. "Wetlands, Flooding, and the Clean Water Act," American Economic Review, American Economic Association, vol. 112(4), pages 1334-1363, April.
    16. Hellerstein, Daniel & Vilorio, Dennis, 2019. "Agricultural Resources and Environmental Indicators, 2019," Economic Information Bulletin 288293, United States Department of Agriculture, Economic Research Service.
    17. Marshall, Elizabeth & Aillery, Marcel & Ribaudo, Marc & Key, Nigel & Sneeringer, Stacy & Hansen, LeRoy & Malcolm, Scott & Riddle, Anne, 2018. "Reducing Nutrient Losses From Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution," Economic Research Report 277567, United States Department of Agriculture, Economic Research Service.
    18. Jeff C. Ho & Anna M. Michalak & Nima Pahlevan, 2019. "Widespread global increase in intense lake phytoplankton blooms since the 1980s," Nature, Nature, vol. 574(7780), pages 667-670, October.
    19. Francis Annan & Wolfram Schlenker, 2015. "Federal Crop Insurance and the Disincentive to Adapt to Extreme Heat," American Economic Review, American Economic Association, vol. 105(5), pages 262-266, May.
    20. H. Von Blottnitz & A. Rabl & D. Boiadjiev & T. Taylor & S. Arnold, 2006. "Damage costs of nitrogen fertilizer in Europe and their internalization," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(3), pages 413-433.
    21. F. Y. Cheng & K. J. Van Meter & D. K. Byrnes & N. B. Basu, 2020. "Maximizing US nitrate removal through wetland protection and restoration," Nature, Nature, vol. 588(7839), pages 625-630, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    2. Weng, Weizhe & Cobourn, Kelly M. & Kemanian, Armen R. & Boyle, Kevin J. & Shi, Yuning & Stachelek, Joseph & White, Charles, 2020. "Quantifying Co-Benefits of Water Quality Policies: An Integrated Assessment Model of Nitrogen Management," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304667, Agricultural and Applied Economics Association.
    3. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    4. Steven M. Ramsey & Jason S. Bergtold & Jessica L. Heier Stamm, 2021. "Field‐Level Land‐Use Adaptation to Local Weather Trends," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1314-1341, August.
    5. repec:ags:aaea22:335440 is not listed on IDEAS
    6. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    7. Susana Ferreira, 2024. "Extreme Weather Events and Climate Change: Economic Impacts and Adaptation Policies," Annual Review of Resource Economics, Annual Reviews, vol. 16(1), pages 207-231, October.
    8. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    9. Kuwayama, Yusuke & Olmstead, Sheila & Zheng, Jiameng, 2022. "A more comprehensive estimate of the value of water quality," Journal of Public Economics, Elsevier, vol. 207(C).
    10. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate Change and Agriculture: Farmer Adaptation to Extreme Heat," Discussion Papers dp18-02, Department of Economics, Simon Fraser University.
    11. Zhang, Hongliang & Mu, Jianhong E. & McCarl, Bruce A., 2018. "Adaptation to climate change via adjustment in land leasing: Evidence from dryland wheat farms in the U.S. Pacific Northwest," Land Use Policy, Elsevier, vol. 79(C), pages 424-432.
    12. repec:cdl:ucscec:qt2dr5z7sf is not listed on IDEAS
    13. Chen, Zhangliang & Dall'Erba, Sandy, 2018. "Do crop insurance programs preclude their recipients from adapting to new climate conditions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274398, Agricultural and Applied Economics Association.
    14. repec:ags:aaea22:335469 is not listed on IDEAS
    15. Arbex, Marcelo & Batu, Michael, 2020. "What if people value nature? Climate change and welfare costs," Resource and Energy Economics, Elsevier, vol. 61(C).
    16. Emanuele Massetti & Robert Mendelsohn, 2020. "Temperature thresholds and the effect of warming on American farmland value," Climatic Change, Springer, vol. 161(4), pages 601-615, August.
    17. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    18. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    19. Choi, Eseul & DePaula, Guilherme & Kyveryga, Peter & Fey, Suzanne, 2024. "The Trade-off between Yield and Nitrogen Pollution under Excessive Rainfall: Evidence from On-farm Field Experiments in Iowa," ISU General Staff Papers 202402222018560000, Iowa State University, Department of Economics.
    20. Ren, Qianping & West, Jeremy, 2023. "Cleaner waters and urbanization," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    21. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    22. Wang, Jingjing, 2022. "Harnessing natural attenuation to reduce CAFOs nitrate emissions: An integrated modeling approach," Ecological Economics, Elsevier, vol. 199(C).
    23. Jianhong E. Mu & Benjamin M. Sleeter & John T. Abatzoglou & John M. Antle, 2017. "Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios," Climatic Change, Springer, vol. 144(2), pages 329-345, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:130:y:2025:i:c:s0095069625000166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.