IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v116y2019p5262-5269.html
   My bibliography  Save this article

The low but uncertain measured benefits of US water quality policy

Author

Listed:
  • David A. Keiser

    (Department of Economics, Iowa State University, Ames, IA 50011; Center for Agricultural and Rural Development, Iowa State University, Ames, IA 50011)

  • Catherine L. Kling

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853)

  • Joseph S. Shapiro

    (Department of Agricultural and Resource Economics, University of California, Berkeley, CA 94720; National Bureau of Economic Research, Cambridge, MA 02138)

Abstract

US investment to decrease pollution in rivers, lakes, and other surface waters has exceeded $1.9 trillion since 1960, and has also exceeded the cost of most other US environmental initiatives. These investments come both from the 1972 Clean Water Act and the largely voluntary efforts to control pollution from agriculture and urban runoff. This paper reviews the methods and conclusions of about 20 recent evaluations of these policies. Surprisingly, most analyses estimate that these policies’ benefits are much smaller than their costs; the benefit–cost ratio from the median study is 0.37. However, existing evidence is limited and undercounts many types of benefits. We conclude that it is unclear whether many of these regulations truly fail a benefit–cost test or whether existing evidence understates their net benefits; we also describe specific questions that when answered would help eliminate this uncertainty.

Suggested Citation

  • David A. Keiser & Catherine L. Kling & Joseph S. Shapiro, 2019. "The low but uncertain measured benefits of US water quality policy," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(12), pages 5262-5269, March.
  • Handle: RePEc:nas:journl:v:116:y:2019:p:5262-5269
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/116/12/5262.full
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shr, Yau-Huo (Jimmy) & Zhang, Wendong, 2024. "Omitted downstream attributes and the benefits of nutrient reductions: Implications for choice experiments," Ecological Economics, Elsevier, vol. 222(C).
    2. Cassidy, Alecia & Meeks, Robyn C. & Moore, Michael R., 2023. "Cleaning up the Great Lakes: Housing market impacts of removing legacy pollutants," Journal of Public Economics, Elsevier, vol. 226(C).
    3. Weng, Weizhe & Cobourn, Kelly M. & Kemanian, Armen R. & Boyle, Kevin J. & Shi, Yuning & Stachelek, Joseph & White, Charles, 2020. "Quantifying Co-Benefits of Water Quality Policies: An Integrated Assessment Model of Nitrogen Management," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304667, Agricultural and Applied Economics Association.
    4. Melstrom, Richard T., 2022. "Residential demand for sediment remediation to restore water quality: Evidence from Milwaukee," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    5. Hill, Elaine L. & Ma, Lala, 2022. "Drinking water, fracking, and infant health," Journal of Health Economics, Elsevier, vol. 82(C).
    6. Yau-Huo Shr & Wendong Zhang, 2021. "Does Omitting Downstream Water Quality Change the Economic Benefits of Nutrient Reduction? Evidence from a Discrete Choice Experiment," Center for Agricultural and Rural Development (CARD) Publications 21-wp620, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    7. Xu, Yuelu & Elbakidze, Levan, 2021. "Integrated assessment of N runoff in the Gulf of Mexico: an application of spatially explicit partial equilibrium and HAWQS models," 2021 Annual Meeting, August 1-3, Austin, Texas 313917, Agricultural and Applied Economics Association.
    8. Ren, Qianping & West, Jeremy, 2023. "Cleaner waters and urbanization," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    9. Metaxoglou, Konstantinos & Smith, Aaron, 2025. "Agriculture’s nitrogen legacy," Journal of Environmental Economics and Management, Elsevier, vol. 130(C).
    10. Lopamudra Chakraborti, 2021. "Impact of upstream plant level pollution on downstream water quality: evidence from the clean water act," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(3), pages 517-535, February.
    11. Jerch, Rhiannon L. & Phaneuf, Daniel J., 2024. "Cities and water quality," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    12. Kuwayama, Yusuke & Olmstead, Sheila & Zheng, Jiameng, 2022. "A more comprehensive estimate of the value of water quality," Journal of Public Economics, Elsevier, vol. 207(C).
    13. Shr, Yau-Huo Jimmy & Zhang, Wendong, 2021. "Does Omitting Downstream Water Quality Change the Economic Benefits of Nutrient Reduction Programs: Evidence from a Discrete Choice Experiment," 2021 Annual Meeting, August 1-3, Austin, Texas 313927, Agricultural and Applied Economics Association.
    14. Flynn, Patrick & Smith, Tucker, 2022. "Rivers, lakes and revenue streams: The heterogeneous effects of Clean Water Act grants on local spending," Journal of Public Economics, Elsevier, vol. 212(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:116:y:2019:p:5262-5269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: PNAS Product Team (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.