IDEAS home Printed from https://ideas.repec.org/p/isu/genres/32039.html
   My bibliography  Save this paper

Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas

Author

Listed:
  • Kling, Catherine L.

Abstract

Agricultural nutrients and other emissions remain a primary source of water quality degradation in much of the nation. Many such sources are classified as “nonpoint†sources under the Clean Water Act and are therefore exempt from most federal regulations and enforceable standards. In addition, many agricultural nonpoint source emissions are difficult to measure and the damages that result from them depend on the amount that is transported to the waterways. Nutrient runoff (particularly nitrogen and phosphorous) from intensive row crop agriculture in much of the cornbelt exemplifies these issues. Both the lack of enforceable standards and the physical characteristics of nutrient fate and transport make the design of efficient policy challenging, as witnessed by the lack of significant progress over the last several decades.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kling, Catherine L., 2010. "Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas," Staff General Research Papers Archive 32039, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:32039
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/papers/p12039-2010-10-18.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Madhu Khanna & Wanhong Yang & Richard Farnsworth & Hayri Önal, 2003. "Cost-Effective Targeting of Land Retirement to Improve Water Quality with Endogenous Sediment Deposition Coefficients," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(3), pages 538-553.
    2. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    3. Arun S. Malik & David Letson & Stephen R. Crutchfield, 1993. "Point/Nonpoint Source Trading of Pollution Abatement: Choosing the Right Trading Ratio," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 959-967.
    4. Segerson, Kathleen, 1988. "Uncertainty and incentives for nonpoint pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 15(1), pages 87-98, March.
    5. Ronald C. Griffin & Daniel W. Bromley, 1982. "Agricultural Runoff as a Nonpoint Externality: A Theoretical Development," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(3), pages 547-552.
    6. Jussi Lankoski & Erik Lichtenberg & Markku Ollikainen, 2008. "Point/Nonpoint Effluent Trading with Spatial Heterogeneity," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 1044-1058.
    7. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, March.
    8. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    9. James S. Shortle & James W. Dunn, 1986. "The Relative Efficiency of Agricultural Source Water Pollution Control Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(3), pages 668-677.
    10. Ribaudo, Marc & Hansen, LeRoy T. & Hellerstein, Daniel & Greene, Catherine R., 2008. "The Use of Markets To Increase Private Investment in Environmental Stewardship," Economic Research Report 56473, United States Department of Agriculture, Economic Research Service.
    11. King, Dennis M., 2005. "Crunch Time for Water Quality Trading," Choices, Agricultural and Applied Economics Association, vol. 20(1).
    12. Lankoski, Jussi E. & Lichtenberg, Erik & Ollikainen, Markku, 2008. "AJAE Appendix for Point/Nonpoint Effluent Trading with Spatial Heterogeneity," American Journal of Agricultural Economics Appendices, Agricultural and Applied Economics Association, vol. 90(4), November.
    13. Rabotyagov, Sergey S. & Campbell, Todd & Jha, Manoj & Gassman, Philip W. & Arnold, Jeffrey G. & Kurkalova, Lyubov A. & Secchi, Silvia & Feng, Hongli & Kling, Catherine L., 2010. "Least Cost Control of Agricultural Nutrient Contributions to the Gulf of Mexico Hypoxic Zone," Staff General Research Papers Archive 31319, Iowa State University, Department of Economics.
    14. Kurt Stephenson & Patricia Norris & Leonard Shabman, 1998. "Watershed-Based Effluent Trading: The Nonpoint Source Challenge," Contemporary Economic Policy, Western Economic Association International, vol. 16(4), pages 412-421, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    2. Zhen, Chen & Zheng, Xiaoyong, 2015. "Measuring the Informational Value of Interpretive Shelf Nutrition Labels to Shoppers," 2016 Allied Social Science Association (ASSA) Annual Meeting, January 3-5, 2016, San Francisco, California 212812, Agricultural and Applied Economics Association.
    3. Ribaudo, Marc & Savage, Jeffrey & Aillery, Marcel P., 2014. "An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay," Economic Research Report 171880, United States Department of Agriculture, Economic Research Service.
    4. Sergey S. Rabotyagov & Adriana M. Valcu-Lisman & Catherine L. Kling, 2016. "Resilient Provision of Ecosystem Services from Agricultural Landscapes: Trade-offs Involving Means and Variances of Water Quality Improvements," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1295-1313.
    5. Reeling, Carson & Verdier, Valentin & Lupi, Frank, 2016. "Valuing Natural Resources Allocated by Dynamic Lottery," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 235673, Agricultural and Applied Economics Association.
    6. Hodde, Whitney & Sesmero, Juan & Gramig, Benjamin & Vyn, Tony & Doering, Otto, 2016. "Climate Change and the Economics of Conservation Tillage," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 236090, Agricultural and Applied Economics Association.
    7. Zhang, Wei, 2015. "Costs of a Practice-Based Air Quality Regulation: Dairy Farms in the San Joaquin Valley," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205304, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
    8. Kurkalova, Lyubov A., 2014. "On optimal placement of best management practices in agricultural watersheds," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169768, Agricultural and Applied Economics Association.
    9. Fleming, Patrick, 2014. "A Model of Agricultural Land Use, Costs, and Water Quality in the Chesapeake Bay," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170373, Agricultural and Applied Economics Association.
    10. Liu, Tingting & Merrill, Nathaniel H. & Gold, Arthur J. & Kellogg, Dorothy Q. & Uchida, Emi, 2013. "Modeling the Production of Multiple Ecosystem Services from Agricultural and Forest Landscapes in Rhode Island," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 42(1), April.
    11. Spencer, Daniel S. & Barnes, James N. & Coatney, Kalyn T. & Parman, Bryon J. & Coble, Keith H., 2017. "Property Rights And The Economics Of Non-Point Source Water Regulations In Agriculture: A New Biophysical-Economic Methodological Approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252835, Southern Agricultural Economics Association.
    12. Valcu, Adriana Mihaela, 2013. "Agricultural nonpoint source pollution and water quality trading: empirical analysis under imperfect cost information and measurement error," ISU General Staff Papers 201301010800004451, Iowa State University, Department of Economics.
    13. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:32039. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Curtis Balmer). General contact details of provider: http://edirc.repec.org/data/deiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.