IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p398-417.html
   My bibliography  Save this article

Forecasting house price growth rates with factor models and spatio-temporal clustering

Author

Listed:
  • Mattera, Raffaele
  • Franses, Philip Hans

Abstract

This paper proposes to use factor models with cluster structure to forecast growth rates of house prices in the US. We assume the presence of global and cluster-specific factors and that the clustering structure is unknown. We adopt a computational procedure that automatically estimates the number of global factors, the clustering structure and the number of clustered factors. The procedure enhances spatial clustering so that the nature of clustered factors reflects the similarity of the time series in the time domain and their spatial proximity. Considering house prices in 1975–2023, we highlight the existence of four main clusters in the US. Moreover, we show that forecasting approaches incorporating global and cluster-specific factors provide more accurate forecasts than models using only global factors and models without factors.

Suggested Citation

  • Mattera, Raffaele & Franses, Philip Hans, 2025. "Forecasting house price growth rates with factor models and spatio-temporal clustering," International Journal of Forecasting, Elsevier, vol. 41(1), pages 398-417.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:398-417
    DOI: 10.1016/j.ijforecast.2024.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cipollini, Andrea & Parla, Fabio, 2020. "Housing market shocks in italy: A GVAR approach," Journal of Housing Economics, Elsevier, vol. 50(C).
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Haroon Mumtaz & Paolo Surico, 2009. "The Transmission of International Shocks: A Factor-Augmented VAR Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(s1), pages 71-100, February.
    4. Marie Chavent & Vanessa Kuentz-Simonet & Amaury Labenne & Jérôme Saracco, 2018. "ClustGeo: an R package for hierarchical clustering with spatial constraints," Computational Statistics, Springer, vol. 33(4), pages 1799-1822, December.
    5. Marina Emiris, 2016. "A dynamic factor model for forecasting house prices in Belgium," Working Paper Research 313, National Bank of Belgium.
    6. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    7. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    8. Breitung, Jörg & Eickmeier, Sandra, 2014. "Analyzing business and financial cycles using multi-level factor models," Discussion Papers 11/2014, Deutsche Bundesbank.
    9. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    10. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    11. Chirok Han & Peter C. B. Phillips & Donggyu Sul, 2017. "Lag length selection in panel autoregression," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 225-240, March.
    12. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    13. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    14. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    15. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    16. Bram van Dijk & Philip Hans Franses & Richard Paap & Dick van Dijk, 2011. "Modelling regional house prices," Applied Economics, Taylor & Francis Journals, vol. 43(17), pages 2097-2110.
    17. Daniel Peña & Victor J. Yohai, 2016. "Generalized Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1121-1131, July.
    18. Guenter W. Beck & Kirstin Hubrich & Massimiliano Marcellino, 2009. "Regional inflation dynamics within and across euro area countries and a comparison with the United States [‘On the relevance and nature of regional inflation differentials: The case of Spain’, Banc," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(57), pages 142-184.
    19. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    20. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    21. repec:bla:ecpoli:v:24:y:2009:i::p:141-184 is not listed on IDEAS
    22. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    23. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    24. Brady, Ryan R., 2014. "The spatial diffusion of regional housing prices across U.S. states," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 150-166.
    25. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    26. Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.
    27. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    28. Sonali Das & Rangan Gupta & Alain Kabundi, 2011. "Forecasting regional house price inflation: a comparison between dynamic factor models and vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(2), pages 288-302, March.
    29. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    30. Emanuel Moench & Serena Ng, 2011. "A hierarchical factor analysis of U.S. housing market dynamics," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.
    31. Eickmeier, Sandra & Gambacorta, Leonardo & Hofmann, Boris, 2014. "Understanding global liquidity," European Economic Review, Elsevier, vol. 68(C), pages 1-18.
    32. Stéphane Dées & Jochen Güntner, 2017. "Forecasting Inflation Across Euro Area Countries and Sectors: A Panel VAR Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 431-453, July.
    33. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
    34. Mattera, Raffaele & Franses, Philip Hans, 2023. "Are African business cycles synchronized? Evidence from spatio-temporal modeling," Economic Modelling, Elsevier, vol. 128(C).
    35. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2016. "The World Is Not Enough! Small Open Economies and Regional Dependence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 118(1), pages 168-195, January.
    36. Sigmund, Michael & Ferstl, Robert, 2021. "Panel vector autoregression in R with the package panelvar," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 693-720.
    37. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    38. Smucler, Ezequiel, 2019. "Consistency of generalized dynamic principal components in dynamic factor models," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    39. Philip Hans Franses & Thomas Wiemann, 2020. "Intertemporal Similarity of Economic Time Series: An Application of Dynamic Time Warping," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 59-75, June.
    40. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    41. Todd Kuethe & Valerien Pede, 2011. "Regional Housing Price Cycles: A Spatio-temporal Analysis Using US State-level Data," Regional Studies, Taylor & Francis Journals, vol. 45(5), pages 563-574.
    42. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    43. Dominik Blatt & Kausik Chaudhuri & Hans Manner, 2023. "A changepoint analysis of UK house price spillovers," Regional Studies, Taylor & Francis Journals, vol. 57(7), pages 1223-1238, July.
    44. Kim, Young Se & Rous, Jeffrey J., 2012. "House price convergence: Evidence from US state and metropolitan area panels," Journal of Housing Economics, Elsevier, vol. 21(2), pages 169-186.
    45. repec:oup:ecpoli:v:24:y:2009:i::p:141-184 is not listed on IDEAS
    46. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
    3. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    4. Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.
    5. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    6. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    7. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    8. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    9. Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
    10. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    11. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    12. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    13. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    14. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    15. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    16. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    17. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    18. Nii Ayi Armah & Norman Swanson, 2011. "Some variables are more worthy than others: new diffusion index evidence on the monitoring of key economic indicators," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 43-60.
    19. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    20. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:398-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.