IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v80y2021icp693-720.html
   My bibliography  Save this article

Panel vector autoregression in R with the package panelvar

Author

Listed:
  • Sigmund, Michael
  • Ferstl, Robert

Abstract

In this paper we extend two general methods of moment (GMM) estimators to panel vector autoregression models (PVAR) with p lags of endogenous variables, predetermined and strictly exogenous variables. We first extend the first difference GMM estimator to this extended PVAR model. Second, we do the same for the system GMM estimator. We implement these estimators in the R package panelvar. In addition to the GMM estimators, we contribute to the empirical literature by implementing common specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions. Finally, we implement the first difference and the forward orthogonal transformation to remove the fixed effects.

Suggested Citation

  • Sigmund, Michael & Ferstl, Robert, 2021. "Panel vector autoregression in R with the package panelvar," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 693-720.
  • Handle: RePEc:eee:quaeco:v:80:y:2021:i:c:p:693-720
    DOI: 10.1016/j.qref.2019.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976918301467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2019.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Mehrhoff, Jens, 2009. "A solution to the problem of too many instruments in dynamic panel data GMM," Discussion Paper Series 1: Economic Studies 2009,31, Deutsche Bundesbank.
    4. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    7. Koenker, Roger & Machado, Jose A. F., 1999. "GMM inference when the number of moment conditions is large," Journal of Econometrics, Elsevier, vol. 93(2), pages 327-344, December.
    8. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    9. Michael R.M. Abrigo & Inessa Love, 2016. "Estimation of Panel Vector Autoregression in Stata: a Package of Programs," Working Papers 201602, University of Hawaii at Manoa, Department of Economics.
    10. Matz Dahlberg & Eva Johansson, 2000. "An examination of the dynamic behaviour of local governments using GMM bootstrapping methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(4), pages 401-416.
    11. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    12. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    13. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    14. G. Kapetanios, 2008. "A bootstrap procedure for panel data sets with many cross-sectional units," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 377-395, July.
    15. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    16. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    17. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    18. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    19. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    20. Love, Inessa & Zicchino, Lea, 2006. "Financial development and dynamic investment behavior: Evidence from panel VAR," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 190-210, May.
    21. Hansen, Lars Peter, 2012. "Proofs for large sample properties of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 325-330.
    22. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    23. Michael R. M. Abrigo & Inessa Love, 2016. "Estimation of panel vector autoregression in Stata," Stata Journal, StataCorp LP, vol. 16(3), pages 778-804, September.
    24. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    25. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    26. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    27. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    28. Mehrhoff, Jens, 2009. "A solution to the problem of too many instruments in dynamic panel data GMM," IBES Diskussionsbeiträge 171, University of Duisburg-Essen, Institute of Business and Economic Studie (IBES).
    29. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lea Steininger & Michael Sigmund, 2020. "Reciprocity in bank regulatory reforms and income inequality: first evidence from a panel vector autoregression analysis," Empirical Economics, Springer, vol. 59(4), pages 1537-1572, October.
    2. Lips, Johannes, 2018. "Debt and the Oil Industry - Analysis on the Firm and Production Level," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181504, Verein für Socialpolitik / German Economic Association.
    3. Hertweck, Matthias & Brey, Bjoern, 2017. "The Persistent Effects of Monsoon Rainfall Shocks in India: A Nonlinear VAR Approach," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168256, Verein für Socialpolitik / German Economic Association.
    4. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    5. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    6. Zouaoui, Haykel & Zoghlami, Feten, 2020. "On the income diversification and bank market power nexus in the MENA countries: Evidence from a GMM panel-VAR approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    7. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    8. Bakhat, Mohcine & Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "Elasticities of transport fuels at times of economic crisis: An empirical analysis for Spain," Energy Economics, Elsevier, vol. 68(S1), pages 66-80.
    9. Canarella, Giorgio & Miller, Stephen M., 2018. "The determinants of growth in the U.S. information and communication technology (ICT) industry: A firm-level analysis," Economic Modelling, Elsevier, vol. 70(C), pages 259-271.
    10. Hayakawa, Kazuhiko, 2016. "Improved GMM estimation of panel VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 240-264.
    11. Kate Hynes & Yum K. Kwan & Anthony Foley, 2017. "Local linkages: The interdependence of foreign and domestic firms," GRU Working Paper Series GRU_2017_006, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    12. Medina-Durango, Carlos Alberto & Posso Suárez, Christian Manuel & Tamayo, Jorge A. & Monsalve, Emma, 2012. "Dinámica de la demanda laboral en la industria manufacturera colombiana 1993-2009 : una estimación panel VAR," Chapters, in: Arango-Thomas, Luis Eduardo & Hamann-Salcedo, Franz Alonso (ed.), El mercado de trabajo en Colombia : hechos, tendencias e instituciones, chapter 7, pages 289-330, Banco de la Republica de Colombia.
    13. Rahman, Mizanur, 2008. "The Impact of a Common Currency on East Asian Production Networks and China’s Exports Behavior," MPRA Paper 13931, University Library of Munich, Germany.
    14. Emmi Martikainen, 2014. "Does file-sharing reduce DVD sales?," Netnomics, Springer, vol. 15(1), pages 9-31, July.
    15. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    16. Dolton, Peter & Bondibene, Chiara Rosazza & Stops, Michael, 2015. "Identifying the employment effect of invoking and changing the minimum wage: A spatial analysis of the UK," Labour Economics, Elsevier, vol. 37(C), pages 54-76.
    17. Demir, Caner & Cergibozan, Raif, 2020. "Does alternative energy usage converge across Oecd countries?," Renewable Energy, Elsevier, vol. 146(C), pages 559-567.
    18. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    19. Mateo Zokalj, 2016. "The impact of population aging on public finance in the European Union," Financial Theory and Practice, Institute of Public Finance, vol. 40(4), pages 383-412.
    20. Dithmer, Jan & Abdulai, Awudu, 2017. "Does trade openness contribute to food security? A dynamic panel analysis," Food Policy, Elsevier, vol. 69(C), pages 218-230.

    More about this item

    Keywords

    Panel vector autoregression model; Generalized method of moments; First difference and system GMM; R;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:80:y:2021:i:c:p:693-720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.