IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544224041100.html
   My bibliography  Save this article

Can climate factors improve the forecasting of electricity price volatility? Evidence from Australia

Author

Listed:
  • Guo, Kun
  • Liu, Yu
  • Cao, Shanwei
  • Zhai, Xiangyang
  • Ji, Qiang

Abstract

The increasing share of renewable energy generation and the frequent occurrence of extreme climate events have made the impact of climate factors on electricity price fluctuations increasingly prominent. This paper compares the forecasting accuracy of electricity price volatility in the Australian National Electricity Market before and after incorporating a series of climate factors into traditional heterogeneous autoregressive realized volatility (HAR-RV) models. The results show that climate factors, including precipitation, wind speed, maximum temperature, minimum temperature, and average temperature, have significant out-of-sample predictive value for the Australian electricity market. Compared to the widely studied HAR-RV model and the one which incorporates higher-order moments, our model achieved a maximum reduction in RMSE by 44.120 % and 26.227 %, respectively. Based on step-length electricity price volatility forecasting, long-term trends relating to climate factors should not be overlooked. The variable importance rankings of precipitation and wind speed in the volatility forecasting model is related to the dynamic changes in renewable energy generation, reflecting the sensitivity of electricity price fluctuations to the seasonal characteristics of climate, while sudden extreme weather events often lead to a significant increase in the importance rankings of related climate factors.

Suggested Citation

  • Guo, Kun & Liu, Yu & Cao, Shanwei & Zhai, Xiangyang & Ji, Qiang, 2025. "Can climate factors improve the forecasting of electricity price volatility? Evidence from Australia," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224041100
    DOI: 10.1016/j.energy.2024.134332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224041100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    3. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    4. Alexander Golub & Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany’s Power Sector to Heat and Drought," The Energy Journal, , vol. 43(3), pages 1-1, May.
    5. Kabir, Elnaz & Srikrishnan, Vivek & Liu, M. Vivienne & Steinschneider, Scott & Anderson, C. Lindsay, 2024. "Quantifying the impact of multi-scale climate variability on electricity prices in a renewable-dominated power grid," Renewable Energy, Elsevier, vol. 223(C).
    6. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    7. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    8. Thomas Longden & Simon Quilty & Brad Riley & Lee V. White & Michael Klerck & Vanessa Napaltjarri Davis & Norman Frank Jupurrurla, 2022. "Temperature extremes exacerbate energy insecurity for Indigenous communities in remote Australia," Nature Energy, Nature, vol. 7(1), pages 11-12, January.
    9. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    10. Tashpulatov, Sherzod N., 2013. "Estimating the volatility of electricity prices: The case of the England and Wales wholesale electricity market," Energy Policy, Elsevier, vol. 60(C), pages 81-90.
    11. Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
    12. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    13. Fenghua Wen & Yupei Zhao & Minzhi Zhang & Chunyan Hu, 2019. "Forecasting realized volatility of crude oil futures with equity market uncertainty," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6411-6427, December.
    14. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    15. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    16. Ballester, Cristina & Furió, Dolores, 2015. "Effects of renewables on the stylized facts of electricity prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1596-1609.
    17. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    18. Weron, Rafal, 2000. "Energy price risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 127-134.
    19. Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
    20. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    21. Flowers, Mallory E. & Smith, Matthew K. & Parsekian, Ara W. & Boyuk, Dmitriy S. & McGrath, Jenna K. & Yates, Luke, 2016. "Climate impacts on the cost of solar energy," Energy Policy, Elsevier, vol. 94(C), pages 264-273.
    22. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    23. repec:dau:papers:123456789/4598 is not listed on IDEAS
    24. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    25. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    26. Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    27. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    28. Alexander Golub & Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany’s Power Sector to Heat and Drought," The Energy Journal, , vol. 43(3), pages 157-184, May.
    29. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    30. Zhao, Wanli & Zhai, Xiangyang & Ji, Qiang & Liu, Zhenhua, 2024. "Measuring crisis from climate risk spillovers in European electricity markets," Energy Economics, Elsevier, vol. 134(C).
    31. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    32. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    33. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    34. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    35. Luo, Keyu & Ye, Yong, 2024. "How responsive are retail electricity prices to crude oil fluctuations in the US? Time-varying and asymmetric perspectives," Research in International Business and Finance, Elsevier, vol. 69(C).
    36. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    37. Ganepola, Chanaka N. & Shubita, Moade & Lee, Lillian, 2023. "The electric shock: Causes and consequences of electricity prices in the United Kingdom," Energy Economics, Elsevier, vol. 126(C).
    38. Abban, Abdul Rashid & Hasan, Mohammad Z., 2021. "Solar energy penetration and volatility transmission to electricity markets—An Australian perspective," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 434-449.
    39. Donglan Liu & Xin Liu & Kun Guo & Qiang Ji & Yingxian Chang, 2023. "Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    40. Alexander Golub, Kristina Govorukha, Philip Mayer, and Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany's Power Sector to Heat and Drought," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    41. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
    3. Luo, Xin & Tao, Yunqing & Zou, Kai, 2022. "A new measure of realized volatility: Inertial and reverse realized semivariance," Finance Research Letters, Elsevier, vol. 47(PA).
    4. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
    5. Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
    6. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    7. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    8. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    9. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    10. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    11. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    12. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    13. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    14. Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
    15. Ma, Feng & Liu, Jing & Huang, Dengshi & Chen, Wang, 2017. "Forecasting the oil futures price volatility: A new approach," Economic Modelling, Elsevier, vol. 64(C), pages 560-566.
    16. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
    17. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    18. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    19. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    20. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224041100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.