IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp505-516.html
   My bibliography  Save this article

Evolutionary game analysis on the behavior strategies of power producers in renewable portfolio standard

Author

Listed:
  • Xin-gang, Zhao
  • Ling-zhi, Ren
  • Yu-zhuo, Zhang
  • Guan, Wan

Abstract

Renewable portfolio standard (RPS) plays a significant role in developing renewable energy. This study developed an evolution game model of power producers to analyze the symbiotic evolution between RPS and the electric producers’ behavior strategies, and discuss the impacts of the key institutional parameters on the dynamic evolution process of electric producers. To verify the theoretical results, simulation experiments and sensitivity analysis were conducted with meaningful results: Trading Tradable Green certificates (TGC) could become the common belief of all power producers, with the scientific design of institutional parameters. An optimal quota, higher unit fine, lower transaction cost and marginal cost difference of green and thermal power contribute to improving the effectiveness of RPS. This study could provide some scientific recommendations for government to design and construct RPS.

Suggested Citation

  • Xin-gang, Zhao & Ling-zhi, Ren & Yu-zhuo, Zhang & Guan, Wan, 2018. "Evolutionary game analysis on the behavior strategies of power producers in renewable portfolio standard," Energy, Elsevier, vol. 162(C), pages 505-516.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:505-516
    DOI: 10.1016/j.energy.2018.07.209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morthorst, P. E., 2000. "The development of a green certificate market," Energy Policy, Elsevier, vol. 28(15), pages 1085-1094, December.
    2. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    3. Ji, Ping & Ma, Xin & Li, Gang, 2015. "Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective," International Journal of Production Economics, Elsevier, vol. 166(C), pages 155-162.
    4. Agnolucci, Paolo, 2007. "The effect of financial constraints, technological progress and long-term contracts on tradable green certificates," Energy Policy, Elsevier, vol. 35(6), pages 3347-3359, June.
    5. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
    6. Shrimali, Gireesh & Tirumalachetty, Sumala, 2013. "Renewable energy certificate markets in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 702-716.
    7. Marchenko, O.V., 2008. "Modeling of a green certificate market," Renewable Energy, Elsevier, vol. 33(8), pages 1953-1958.
    8. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    9. Gozgor, Giray, 2016. "Are shocks to renewable energy consumption permanent or transitory? An empirical investigation for Brazil, China, and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 913-919.
    10. Fagiani, Riccardo & Hakvoort, Rudi, 2014. "The role of regulatory uncertainty in certificate markets: A case study of the Swedish/Norwegian market," Energy Policy, Elsevier, vol. 65(C), pages 608-618.
    11. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    12. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    13. Jensen, S. G. & Skytte, K., 2002. "Interactions between the power and green certificate markets," Energy Policy, Elsevier, vol. 30(5), pages 425-435, April.
    14. Upton, Gregory B. & Snyder, Brian F., 2017. "Funding renewable energy: An analysis of renewable portfolio standards," Energy Economics, Elsevier, vol. 66(C), pages 205-216.
    15. Sun, Yanming, 2016. "The optimal percentage requirement and welfare comparisons in a two-country electricity market with a common tradable green certificate system," Economic Modelling, Elsevier, vol. 55(C), pages 322-327.
    16. Hustveit, Magne & Frogner, Jens Sveen & Fleten, Stein-Erik, 2017. "Tradable green certificates for renewable support: The role of expectations and uncertainty," Energy, Elsevier, vol. 141(C), pages 1717-1727.
    17. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2017. "Optimal regulation of renewable energy: A comparison of Feed-in Tariffs and Tradable Green Certificates in the Spanish electricity system," Energy Economics, Elsevier, vol. 67(C), pages 387-399.
    18. Barbose, Galen & Wiser, Ryan & Heeter, Jenny & Mai, Trieu & Bird, Lori & Bolinger, Mark & Carpenter, Alberta & Heath, Garvin & Keyser, David & Macknick, Jordan & Mills, Andrew & Millstein, Dev, 2016. "A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards," Energy Policy, Elsevier, vol. 96(C), pages 645-660.
    19. Aune, Finn Roar & Dalen, Hanne Marit & Hagem, Cathrine, 2012. "Implementing the EU renewable target through green certificate markets," Energy Economics, Elsevier, vol. 34(4), pages 992-1000.
    20. Choi, Dong Gu & Park, Sang Yong & Hong, Jong Chul, 2015. "Quantitatively exploring the future of renewable portfolio standard in the Korean electricity sector via a bottom-up energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 793-803.
    21. Amundsen, Eirik S. & Nese, Gjermund, 2009. "Integration of tradable green certificate markets: What can be expected?," Journal of Policy Modeling, Elsevier, vol. 31(6), pages 903-922, November.
    22. Bhattacharya, Suparna & Giannakas, Konstantinos & Schoengold, Karina, 2017. "Market and welfare effects of renewable portfolio standards in United States electricity markets," Energy Economics, Elsevier, vol. 64(C), pages 384-401.
    23. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    24. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    25. Kwon, Tae-hyeong, 2015. "Is the renewable portfolio standard an effective energy policy?: Early evidence from South Korea," Utilities Policy, Elsevier, vol. 36(C), pages 46-51.
    26. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    27. Dinica, Valentina & Arentsen, Maarten J., 2003. "Green certificate trading in the Netherlands in the prospect of the European electricity market," Energy Policy, Elsevier, vol. 31(7), pages 609-620, June.
    28. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff's Laws and Nash-Cournot competition," Energy Economics, Elsevier, vol. 70(C), pages 270-288.
    29. Tamás, Mészáros Mátyás & Bade Shrestha, S.O. & Zhou, Huizhong, 2010. "Feed-in tariff and tradable green certificate in oligopoly," Energy Policy, Elsevier, vol. 38(8), pages 4040-4047, August.
    30. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    31. Espey, Simone, 2001. "Renewables portfolio standard: a means for trade with electricity from renewable energy sources?," Energy Policy, Elsevier, vol. 29(7), pages 557-566, June.
    32. Xiao, Tiaojun & Yu, Gang, 2006. "Supply chain disruption management and evolutionarily stable strategies of retailers in the quantity-setting duopoly situation with homogeneous goods," European Journal of Operational Research, Elsevier, vol. 173(2), pages 648-668, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Xu & Xin-gang, Zhao, 2023. "The synergistic effect between Renewable Portfolio Standards and carbon emission trading system: A perspective of China," Renewable Energy, Elsevier, vol. 211(C), pages 1010-1023.
    2. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    3. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    4. Sun, Wenjun & Zhu, Changfeng & Li, Hui, 2022. "Evolutionary game of emergency logistics path selection under bounded rationality," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Safarzadeh, Soroush, 2022. "Time-Of-Use pricing in an energy sustainable supply chain with government interventions: A game theory approach," Energy, Elsevier, vol. 255(C).
    6. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    7. Jamali, Mohammad-Bagher & Rasti-Barzoki, Morteza & Khosroshahi, Hossein & Altmann, Jörn, 2022. "An evolutionary game-theoretic approach to study the technological transformation of the industrial sector toward renewable electricity procurement: A case study of Iran," Applied Energy, Elsevier, vol. 318(C).
    8. Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
    9. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "A game theoretic approach for time-of-use pricing with considering renewable portfolio standard effects and investment in energy storage technologies under government interventions," Energy, Elsevier, vol. 282(C).
    10. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying, Zhou & Xin-gang, Zhao & Zhen, Wang, 2020. "Demand side incentive under renewable portfolio standards: A system dynamics analysis," Energy Policy, Elsevier, vol. 144(C).
    2. Yanming Sun & Lin Zhang, 2019. "Full Separation or Full Integration? An Investigation of the Optimal Renewables Policy Employing Tradable Green Certificate Systems in Two Countries’ Electricity Markets," IJERPH, MDPI, vol. 16(24), pages 1-17, December.
    3. Pineda, Salvador & Bock, Andreas, 2016. "Renewable-based generation expansion under a green certificate market," Renewable Energy, Elsevier, vol. 91(C), pages 53-63.
    4. Xin-gang, Zhao & Lei, Xu & Ying, Zhou, 2022. "How to promote the effective implementation of China’s Renewable Portfolio Standards considering non-neutral technology?," Energy, Elsevier, vol. 238(PB).
    5. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    6. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    7. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    8. Xin-gang, Zhao & Tian-tian, Feng & Lu, Cui & Xia, Feng, 2014. "The barriers and institutional arrangements of the implementation of renewable portfolio standard: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 371-380.
    9. Yu, Xianyu & Ge, Shengxian & Zhou, Dequn & Wang, Qunwei & Chang, Ching-Ter & Sang, Xiuzhi, 2022. "Whether feed-in tariff can be effectively replaced or not? An integrated analysis of renewable portfolio standards and green certificate trading," Energy, Elsevier, vol. 245(C).
    10. Hustveit, Magne & Frogner, Jens Sveen & Fleten, Stein-Erik, 2017. "Tradable green certificates for renewable support: The role of expectations and uncertainty," Energy, Elsevier, vol. 141(C), pages 1717-1727.
    11. Ying, Zhou & Xin-gang, Zhao & Xue-feng, Jia & Zhen, Wang, 2021. "Can the Renewable Portfolio Standards improve social welfare in China's electricity market?," Energy Policy, Elsevier, vol. 152(C).
    12. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    13. Karakosta, Ourania & Petropoulou, Dimitra, 2022. "The EU electricity market: Renewables targets, Tradable Green Certificates and electricity trade," Energy Economics, Elsevier, vol. 111(C).
    14. Shayegh, Soheil & Sanchez, Daniel L., 2021. "Impact of market design on cost-effectiveness of renewable portfolio standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Unteutsch, Michaela, 2014. "Redistribution Effects Resulting from Cross-Border Cooperation in Support for Renewable Energy," EWI Working Papers 2014-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    16. Wang, Ge & Zhang, Qi & Li, Yan & Mclellan, Benjamin C. & Pan, Xunzhang, 2019. "Corrective regulations on renewable energy certificates trading: Pursuing an equity-efficiency trade-off," Energy Economics, Elsevier, vol. 80(C), pages 970-982.
    17. Shrestha, Anil & Kakinaka, Makoto, 2023. "Nexus between renewable energy certificates and electricity prices in India: Evidence from wavelet coherence analysis," Renewable Energy, Elsevier, vol. 204(C), pages 836-847.
    18. Fang, Debin & Zhao, Chaoyang & Kleit, Andrew N., 2019. "The impact of the under enforcement of RPS in China: An evolutionary approach," Energy Policy, Elsevier, vol. 135(C).
    19. Hui, Wang & Xin-gang, Zhao & Ling-zhi, Ren & Fan, Lu, 2021. "An agent-based modeling approach for analyzing the influence of market participants’ strategic behavior on green certificate trading," Energy, Elsevier, vol. 218(C).
    20. Irfan, Mohd, 2021. "Integration between electricity and renewable energy certificate (REC) markets: Factors influencing the solar and non-solar REC in India," Renewable Energy, Elsevier, vol. 179(C), pages 65-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:505-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.