IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v104y2017icp373-381.html
   My bibliography  Save this article

Examining the role of policy design and policy interaction in EU automotive emissions performance gaps

Author

Listed:
  • Skeete, Jean-Paul

Abstract

In the wake of the 2015 ‘Dieselgate’ scandal, the US and European governments publicly confronted automakers about their behaviour, which raised concerns about the integrity of the current emissions legislation regimes. In this article, I argue that ‘flexibilities’ within the EU's emissions legislative framework afforded automakers the opportunity to legally sidestep strict performance standards laid out in the law and resulted in a significant performance gap in real world driving emissions. This article provides a timely examination of EU emission legislation policy design and policy interaction within the European Union with the aim of explaining why the EU policy framework failed to regulate the regional automotive industry. Current research is mostly concerned with the typology and effectiveness of individual environmental policy instruments, be it regulatory or economic incentives, that aim to influence industry behaviour. This article approaches the current EU policy regime in a more holistic manner and focuses on the exploitation of weaknesses in the regulatory framework by private firms, which has received little academic attention in the innovation and transition literature. A major contribution of this article therefore is a body of primary qualitative interview data from industry elites concerning relevant emissions policies.

Suggested Citation

  • Skeete, Jean-Paul, 2017. "Examining the role of policy design and policy interaction in EU automotive emissions performance gaps," Energy Policy, Elsevier, vol. 104(C), pages 373-381.
  • Handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:373-381
    DOI: 10.1016/j.enpol.2017.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    2. Clerides, Sofronis & Zachariadis, Theodoros, 2008. "The effect of standards and fuel prices on automobile fuel economy: An international analysis," Energy Economics, Elsevier, vol. 30(5), pages 2657-2672, September.
    3. Nentjes, Andries & de Vries, Frans P. & Wiersma, Doede, 2007. "Technology-forcing through environmental regulation," European Journal of Political Economy, Elsevier, vol. 23(4), pages 903-916, December.
    4. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    5. Wells, Peter & Nieuwenhuis, Paul, 2012. "Transition failure: Understanding continuity in the automotive industry," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1681-1692.
    6. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    7. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    8. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    9. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    10. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    11. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    12. Tarui, Nori & Polasky, Stephen, 2005. "Environmental regulation with technology adoption, learning and strategic behavior," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 447-467, November.
    13. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    14. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    15. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    16. Sanden, Bjorn A. & Azar, Christian, 2005. "Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches," Energy Policy, Elsevier, vol. 33(12), pages 1557-1576, August.
    17. Shiau, Ching-Shin Norman & Michalek, Jeremy J. & Hendrickson, Chris T., 2009. "A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 814-828, November.
    18. Santos, Georgina & Behrendt, Hannah & Maconi, Laura & Shirvani, Tara & Teytelboym, Alexander, 2010. "Part I: Externalities and economic policies in road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 2-45.
    19. Plotkin, Steven E., 2009. "Examining fuel economy and carbon standards for light vehicles," Energy Policy, Elsevier, vol. 37(10), pages 3843-3853, October.
    20. Steinhilber, Simone & Wells, Peter & Thankappan, Samarthia, 2013. "Socio-technical inertia: Understanding the barriers to electric vehicles," Energy Policy, Elsevier, vol. 60(C), pages 531-539.
    21. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    22. Kleit, Andrew N, 1992. "Enforcing Time-Inconsistent Regulation," Economic Inquiry, Western Economic Association International, vol. 30(4), pages 639-648, October.
    23. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    24. Flanagan, Kieron & Uyarra, Elvira & Laranja, Manuel, 2011. "Reconceptualising the 'policy mix' for innovation," Research Policy, Elsevier, vol. 40(5), pages 702-713, June.
    25. Banister, David, 2011. "The trilogy of distance, speed and time," Journal of Transport Geography, Elsevier, vol. 19(4), pages 950-959.
    26. Wells, Peter & Varma, Adarsh & Newman, Dan & Kay, Duncan & Gibson, Gena & Beevor, Jamie & Skinner, Ian, 2013. "Governmental regulation impact on producers and consumers: A longitudinal analysis of the European automotive market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 28-41.
    27. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    28. Rogge, Karoline S. & Schneider, Malte & Hoffmann, Volker H., 2011. "The innovation impact of the EU Emission Trading System -- Findings of company case studies in the German power sector," Ecological Economics, Elsevier, vol. 70(3), pages 513-523, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    2. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    3. Hoffmann, Sebastian & Weyer, Johannes & Longen, Jessica, 2017. "Discontinuation of the automobility regime? An integrated approach to multi-level governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 391-408.
    4. Julia Mazzei & Tommaso Rughi & Maria Enrica Virgillito, 2023. "Knowing brown and inventing green? Incremental and radical innovative activities in the automotive sector," Industry and Innovation, Taylor & Francis Journals, vol. 30(7), pages 824-863, August.
    5. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    6. Hooper, Tara & Austen, Melanie C. & Beaumont, Nicola & Heptonstall, Philip & Holland, Robert A. & Ketsopoulou, Ioanna & Taylor, Gail & Watson, Jim & Winskel, Mark, 2018. "Do energy scenarios pay sufficient attention to the environment? Lessons from the UK to support improved policy outcomes," Energy Policy, Elsevier, vol. 115(C), pages 397-408.
    7. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    8. Tomas Maltby, 2022. "Consensus and entrepreneurship: The contrasting local and national politics of UK air pollution," Environment and Planning C, , vol. 40(3), pages 685-704, May.
    9. Damert, Matthias & Rudolph, Frederic, 2018. "Policy options for a decarbonisation of passenger cars in the EU: Recommendations based on a literature review," Wuppertal Papers 193, Wuppertal Institute for Climate, Environment and Energy.
    10. Ishani Mukherjee & M. Kerem Coban & Azad Singh Bali, 2021. "Policy capacities and effective policy design: a review," Policy Sciences, Springer;Society of Policy Sciences, vol. 54(2), pages 243-268, June.
    11. Russell Tatenda Munodawafa & Satirenjit Kaur Johl, 2019. "A Systematic Review of Eco-Innovation and Performance from the Resource-Based and Stakeholder Perspectives," Sustainability, MDPI, vol. 11(21), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    2. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    3. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    4. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    5. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    6. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    7. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    8. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    9. Jana Hojnik, 2017. "In Pursuit of Eco-innovation," UPP Monograph Series, University of Primorska Press, number 978-961-7023-53-4.
    10. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    11. Rogge, Karoline S. & Reichardt, Kristin, 2013. "Towards a more comprehensive policy mix conceptualization for environmental technological change: A literature synthesis," Working Papers "Sustainability and Innovation" S3/2013, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
    13. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    14. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    15. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    16. Xu, Lei & Su, Jun, 2016. "From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China," Energy Policy, Elsevier, vol. 96(C), pages 328-340.
    17. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    18. Francesco Crespi & Claudia Ghisetti & Francesco Quatraro, 2015. "Taxonomy of Implemented Policy Instruments to Foster the Production of Green Technologies and Improve Environmental and Economic Performance. WWWforEurope Working Paper No. 90," WIFO Studies, WIFO, number 58131, Juni.
    19. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    20. Francesco Crespi & Claudia Ghisetti & Francesco Quatraro, 2015. "Environmental and innovation policies for the evolution of green technologies: a survey and a test," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 5(2), pages 343-370, December.
    21. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    22. Gilli, Marianna & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Innovation complementarity and environmental productivity effects: Reality or delusion? Evidence from the EU," Ecological Economics, Elsevier, vol. 103(C), pages 56-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:373-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.